Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349316

RESUMO

In this study, we introduce a biological method for the production of ternary Quantum Dots (QDs): complex nanostructures with tunable optical and structural properties that utilizes post-synthesis modifications through cation exchange. This versatile in-situ cation exchange method being reported for the first time shows great potential for extending the scope of microbial synthesis. By using this bacterial-based method, we easily synthesize and purify CdS, CdSAg, and Ag2S nanocrystals of a size below 15 nm and with variable morphologies that exhibit fluorescence emissions covering a broad spectral range (from 400 to 800 nm). Energy-dispersive X-ray spectroscopy (EDS) results indicate the partial replacement of Cd2+ by Ag+ when AgNO3 concentration is increased. This replacement produces CdSAg ternary QDs hetero-structures with high stability, fluorescence in the NIR-I (700 - 800 nm), and 36.13% quantum yield. Furthermore, this reaction can be extended for the production of soluble Ag2S nanoparticles (NPs) without any traces of Cd. QDs biosynthesized through this cation exchange process display very low toxicity when tested in bacterial or human cell lines. Biosynthesized ternary hetero-structures were used as red fluorescent dyes to label HeLa cells in confocal microscopy studies, which validates its use in bioimaging applications in the near infrared region. In addition, the application of biologically-produced cadmium NPs in solar cells is reported for the first time. The three biosynthesized QDs were successfully used as photosensitizers, where the CdSAg QDs show the best photovoltaic parameters. Altogether, obtained results validate the use of bacterial cells for the controlled production of nanomaterials with properties that allow their application in diverse technologies. We developed a simple biological process for obtaining tunable Quantum Dots (QDs) with different metal compositions through a cation exchange process. Nanoparticles (NPs) are produced in the extracellular space of bacterial cells exposed to cysteine and CdCl2 in a reaction that depends on S2- generation mediated by cysteine desulfhydrase enzymes and uses cellular biomolecules to stabilize the nanoparticle. Using this extracellular approach, water-soluble fluorescent CdS, CdSAg, and Ag2S Quantum Dots with a tunable emission ranging from 400 to 800 nm were generated. This is the first study reporting the use of microorganisms to produce tunable ternary QDs and the first time that a cation exchange process mediated by cells is described. Obtained results validate the use of biological synthesis to produce NPs with new characteristics and opens a completely new research field related to the use of microorganisms to synthesize complex NPs that are difficult to obtain with regular chemical methods.

2.
Microb Cell Fact ; 13(1): 90, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25027643

RESUMO

BACKGROUND: One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. RESULTS: In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37 ° C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40-60 nm) and an organic shell as determined by UV-vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. CONCLUSIONS: Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells.


Assuntos
Bacillus/metabolismo , Nanopartículas/química , Pontos Quânticos/metabolismo , Energia Solar , Titânio/metabolismo , Fontes de Energia Elétrica , Tamanho da Partícula , Pontos Quânticos/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...