Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 9: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089837

RESUMO

Background: There has been a groundswell of national support for transparent tracking and dissemination of PhD career outcomes. In 2017, individuals from multiple institutions and professional organizations met to create the Unified Career Outcomes Taxonomy (UCOT 2017), a three-tiered taxonomy to help institutions uniformly classify career outcomes of PhD graduates. Early adopters of UCOT 2017, noted ambiguity in some categories of the career taxonomy, raising questions about its consistent application within and across institutions. Methods: To test and evaluate the consistency of UCOT 2017, we calculated inter-rater reliability across two rounds of iterative refinement of the career taxonomy, classifying over 800 PhD alumni records via nine coders. Results: We identified areas of discordance in the taxonomy, and progressively refined UCOT 2017 and an accompanying Guidance Document to improve inter-rater reliability across all three tiers of the career taxonomy. However, differing interpretations of the classifications, especially for faculty classifications in the third tier, resulted in continued discordance among the coders. We addressed this discordance with clarifying language in the Guidance Document, and proposed the addition of a flag system for identification of the title, rank, and prefix of faculty members. This labeling system provides the additional benefit of highlighting the granularity and the intersectionality of faculty job functions, while maintaining the ability to sort by - and report data on - faculty and postdoctoral trainee roles, as is required by some national and federal reporting guidelines. We provide specific crosswalk guidance for how a user may choose to incorporate our suggestions while maintaining the ability to report in accordance with UCOT 2017. Conclusions: Our findings underscore the importance of detailed guidance documents, coder training, and periodic collaborative review of career outcomes taxonomies as PhD careers evolve in the global workforce. Implications for coder-training and use of novice coders are also discussed.


Assuntos
Escolha da Profissão , Educação de Pós-Graduação , Docentes , Humanos , Reprodutibilidade dos Testes
2.
Leukemia ; 34(8): 2025-2037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32066867

RESUMO

Despite decades of clinical use, mechanisms of glucocorticoid resistance are poorly understood. We treated primary murine T lineage acute lymphoblastic leukemias (T-ALLs) with the glucocorticoid dexamethasone (DEX) alone and in combination with the pan-PI3 kinase inhibitor GDC-0941 and observed a robust response to DEX that was modestly enhanced by GDC-0941. Continuous in vivo treatment invariably resulted in outgrowth of drug-resistant clones, ~30% of which showed markedly reduced glucocorticoid receptor (GR) protein expression. A similar proportion of relapsed human T-ALLs also exhibited low GR protein levels. De novo or preexisting mutations in the gene encoding GR (Nr3c1) occurred in relapsed clones derived from multiple independent parental leukemias. CRISPR/Cas9 gene editing confirmed that loss of GR expression confers DEX resistance. Exposing drug-sensitive T-ALLs to DEX in vivo altered transcript levels of multiple genes, and this response was attenuated in relapsed T-ALLs. These data implicate reduced GR protein expression as a frequent cause of glucocorticoid resistance in T-ALL.


Assuntos
Dexametasona/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptores de Glucocorticoides/análise , Animais , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Indazóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Recidiva , Sulfonamidas/administração & dosagem
3.
Genetics ; 211(2): 419-430, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30504365

RESUMO

Controlling protein activity and localization is a key tool in modern biology. Mammalian steroid receptor ligand-binding domain (LBD) fusions have been used in a range of organisms and cell types to inactivate proteins of interest until the cognate steroid ligand is applied. Here, we demonstrate that the glucocorticoid receptor LBD confers ligand-gated control of a heterologous gene expression system (Q system) and the DAF-16 transcription factor in Caenorhabditis elegans These experiments provide a powerful tool for temporal control of protein activity, and will bolster existing tools used to modulate gene expression and protein activity in this animal.


Assuntos
Caenorhabditis elegans/genética , Técnicas Genéticas , Ativação Transcricional , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dexametasona/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucocorticoides/farmacologia , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
4.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24828042

RESUMO

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Longevidade/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células Jurkat , Longevidade/efeitos dos fármacos , Longevidade/genética , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , Ligação Proteica
5.
BMC Microbiol ; 12: 300, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23256533

RESUMO

BACKGROUND: Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli. Although C. elegans is typically fed the standard OP50 strain of E. coli, nematodes fed E. coli strains rendered respiratory deficient, either due to a lack coenzyme Q or the absence of ATP synthase, show significant life span extension. Here we explore the mechanisms accounting for the enhanced nematode life span in response to these diets. RESULTS: The intestinal load of E. coli was monitored by determination of worm-associated colony forming units (cfu/worm or coliform counts) as a function of age. The presence of GFP-expressing E. coli in the worm intestine was also monitored by fluorescence microscopy. Worms fed the standard OP50 E. coli strain have high cfu and GFP-labeled bacteria in their guts at the L4 larval stage, and show saturated coliform counts by day five of adulthood. In contrast, nematodes fed diets of respiratory deficient E. coli lacking coenzyme Q lived significantly longer and failed to accumulate bacteria within the lumen at early ages. Animals fed bacteria deficient in complex V showed intermediate coliform numbers and were not quite as long-lived. The results indicate that respiratory deficient Q-less E. coli are effectively degraded in the early adult worm, either at the pharynx or within the intestine, and do not accumulate in the intestinal tract until day ten of adulthood. CONCLUSIONS: The findings of this study suggest that the nematodes fed the respiratory deficient E. coli diet live longer because the delay in bacterial colonization of the gut subjects the worms to less stress compared to worms fed the OP50 E. coli diet. This work suggests that bacterial respiration can act as a virulence factor, influencing the ability of bacteria to colonize and subsequently harm the animal host. Respiratory deficient bacteria may pose a useful model for probing probiotic relationships within the gut microbiome in higher organisms.


Assuntos
Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Escherichia coli/crescimento & desenvolvimento , Longevidade , Estresse Fisiológico , Complexos de ATP Sintetase/deficiência , Animais , Escherichia coli/genética , Trato Gastrointestinal/microbiologia , Redes e Vias Metabólicas/genética , Ubiquinona/deficiência
6.
Worm ; 1(4): 221-30, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058853

RESUMO

Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.

7.
Curr Biol ; 21(24): 2033-45, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22137474

RESUMO

BACKGROUND: Biological timing mechanisms that integrate cyclical and successive processes are not well understood. C. elegans molting cycles involve rhythmic cellular and animal behaviors linked to the periodic reconstruction of cuticles. Molts are coordinated with successive transitions in the temporal fates of epidermal blast cells, which are programmed by genes in the heterochronic regulatory network. It was known that juveniles molt at regular 8-10 hr intervals, but the anticipated pacemaker had not been characterized. RESULTS: We find that inactivation of the heterochronic gene lin-42a, which is related to the core circadian clock gene PERIOD (PER), results in arrhythmic molts and continuously abnormal epidermal stem cell dynamics. The oscillatory expression of lin-42a in the epidermis peaks during the molts. Further, forced expression of lin-42a leads to anachronistic larval molts and lethargy in adults. CONCLUSIONS: Our results suggest that rising and falling levels of LIN-42A allow the start and completion, respectively, of larval molts. We propose that LIN-42A and affiliated factors regulate molting cycles in much the same way that PER-based oscillators drive rhythmic behaviors and metabolic processes in mature mammals. Further, the combination of reiterative and stage-specific functions of LIN-42 may coordinate periodic molts with successive development of the epidermis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Muda , Transdução de Sinais , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Imunofluorescência , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
8.
J Neurosci ; 28(18): 4777-84, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18448654

RESUMO

Neurotransmitter signaling in the mature nervous system is well understood, but the functions of transmitters in the immature nervous system are less clear. Although transmitters released during embryogenesis regulate neuronal proliferation and migration, little is known about their role in regulating early neuronal differentiation. Here, we show that GABA and glutamate drive calcium-dependent embryonic electrical activity that regulates transmitter specification. The number of neurons expressing different transmitters changes when GABA or glutamate signaling is blocked chronically, either using morpholinos to knock down transmitter-synthetic enzymes or applying pharmacological receptor antagonists during a sensitive period of development. We find that calcium spikes are triggered by metabotropic GABA and glutamate receptors, which engage protein kinases A and C. The results reveal a novel role for embryonically expressed neurotransmitters.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácido Glutâmico/metabolismo , Receptores de GABA/fisiologia , Receptores de Glutamato/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Antígenos CD57/metabolismo , Cálcio/metabolismo , Colina O-Acetiltransferase/metabolismo , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Pesquisa sobre Serviços de Saúde , Larva , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfosserina/farmacologia , Receptores de GABA/efeitos dos fármacos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA