Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0295811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241264

RESUMO

The utilisation of insect meal-based fish feed as a substitute for conventional fish meal-based fish feed is considered as a promising innovative alternative to boost circularity in aquaculture and aquaponics. Basic research on its use in aquaponics is limited. So far, no reports on the effects of fish waste water, derived from a recirculating aquaculture system using Black Soldier Fly (BSF) meal-based diets, were available on the growth performance of lettuce. Therefore, this study aimed to compare the effect of reusing fish waste water from tilapia culture (as a base for the nutrient solution) fed with a fish meal-based diet (FM) and a BSF meal-based diet on resource use and lettuce growth in decoupled aquaponic systems. A conventional hydroponics nutrient solution (HP) served as control, and inorganic fertilisers were added to all nutrient solutions to reach comparable target concentrations. The experiment was conducted in a controlled climate chamber in nine separate hydroponics units, three per treatment. Lettuce fresh and dry weight, number of leaves, relative leaf chlorophyll concentration, water consumption, and the usage of inorganic fertilisers were measured. Micro- and macronutrients in the nutrient solutions were monitored in time series. Similar lettuce yield was seen in all treatments, with no significant effects on fresh and dry weight, the number of leaves, and relative chlorophyll values. Water use per plant was also similar between treatments, while the amount of total inorganic fertiliser required was 32% lower in FM and BSF compared to HP. Higher sodium concentrations were found in the FM nutrient solutions compared to BSF and HP. The results confirm that BSF-based diet is a promising alternative to FM-based diet in aquaponics with no negative effects on lettuce growth. Additionally, BSF-based diet might be beneficial in intensive, professional aquaponics applications due to the lower sodium concentration in the nutrient solution.


Assuntos
Dípteros , Lactuca , Animais , Águas Residuárias , Fertilizantes , Peixes , Clorofila , Sódio
2.
PLoS One ; 14(6): e0218368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220125

RESUMO

Decoupled aquaponic systems have the potential to become one of the most effective sustainable production systems for the combined production of animal protein and plant crops. Here, recirculating aquaculture systems for fish production are combined with hydroponics for soilless plant production thereby recycling dissolved nutrients derived from metabolism of the fish. The aim of the present study was to characterize hydroponic lettuce production using conventional nutrient solution in comparison with decoupled aquaponics using the nutrient rich fish water as basis for the nutrient solution being supplemented by missing nutrients. In addition, one aquaponic treatment became disinfected in order to assess any occurring advantage of the aquaponics derived fish water. For evaluation the temperature, electrical conductivity, pH, and the mineral composition of the nutrient solution, as well as colony forming units in the fish water were monitored. Additionally, plant growth (fresh and dry weight, number and area of leaves) and quality parameters of lettuce leaves (nitrate, mineral content, phenolic compounds) were examined. Carbon sources and microorganisms derived from fish water seem to have neither beneficial nor detrimental effects on plant growth in this study. Except for some differences in the mineral content of the lettuce leaves, all other quality parameters were not significantly different. The use of aquaponic fish water saved 62.8% mineral fertilizer and fully substituted the required water for the nutrient solution in comparison to the control. Additionally, the reduced fertilizer demand using decoupled aquaponics can contribute to reduce greenhouse gas emissions of an annual lettuce production site per ha by 72% due to saving the energy for fertilizer production. This study clearly demonstrates the huge potential of the innovative approach of decoupled aquaponics to foster the transformation of our conventional agriculture towards sustainable production systems saving resources and minimizing emissions.


Assuntos
Aquicultura , Gases de Efeito Estufa , Lactuca/crescimento & desenvolvimento , Desinfecção , Fertilizantes/efeitos adversos , Humanos , Hidroponia , Compostos Inorgânicos/química , Lactuca/efeitos dos fármacos , Nitratos/química , Nutrientes/química , Fenóis/química
3.
PLoS One ; 12(9): e0183056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957357

RESUMO

In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.


Assuntos
Aquicultura/métodos , Hidroponia/métodos , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Peixes/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Nitratos/análise , Nitrogênio/análise , Esgotos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA