Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(4): 402-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282554

RESUMO

BACKGROUND: Due to the increasing demand to generate thick and vascularized tissue-engineered constructs, novel strategies are currently being developed. An effective example is the fabrication of a 3D scaffold containing oxygen-releasing biomaterials to solve the limitations of gas diffusion and transport within transplanted tissues or devices. METHODS: In this study, we developed a biodegradable scaffold made of polycaprolactone (PCL) mixed with oxygen-generating calcium peroxide (CPO) to design new structures for regenerative tissue using a 3D printer capable of forming arbitrarily shapes. RESULTS AND CONCLUSION: When osteoblast progenitor cells (MC3T3-E1 cells) were cultured under hypoxic conditions on scaffolds fabricated with this technique, it was shown that cell death was reduced by the new scaffolds. Therefore, the results suggest that 3D-printed scaffolds made from biodegradable oxygen-releasing materials may be useful for tissue engineering and regeneration.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Oxigênio/metabolismo , Materiais Biocompatíveis/química , Poliésteres/química , Cicatrização , Impressão Tridimensional
2.
Micromachines (Basel) ; 14(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630168

RESUMO

In vivo, articular cartilage tissue is surrounded by a cartilage membrane, and hydrostatic pressure (HP) and compressive strain increase simultaneously with the compressive stress. However, it has been impossible to investigate the effects of simultaneous loading in vitro. In this study, a bioreactor capable of applying compressive stress under HP was developed to reproduce ex vivo the same physical loading environment found in cartilage. First, a HP stimulation unit was constructed to apply a cyclic HP pressure-resistant chamber by controlling a pump and valve. A compression-loading mechanism that can apply compressive stress using an electromagnetic force was implemented in the chamber. The synchronization between the compression and HP units was evaluated, and the stimulation parameters were quantitatively evaluated. Physiological HP and compressive strain were applied to the chondrocytes encapsulated in alginate and gelatin gels after applying high HP at 25 MPa, which induced damage to the chondrocytes. It was found that compressive stimulation increased the expression of genes related to osteoarthritis. Furthermore, the simultaneous application of compressive strain and HP, which is similar to the physiological environment in cartilage, had an inhibitory effect on the expression of genes related to osteoarthritis. HP alone also suppressed the expression of osteoarthritis-related genes. Therefore, the simultaneous hydrostatic and compressive stress-loading device developed to simulate the mechanical environment in vivo may be an important tool for elucidating the mechanisms of disease onset and homeostasis in cartilage.

3.
Acta Biomater ; 168: 174-184, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392936

RESUMO

In vivo bone remodeling is promoted by the balance between osteoclast and osteoblast activity. Conventional research on bone regeneration has mainly focused on increasing osteoblast activity, with limited studies on the effects of scaffold topography on cell differentiation. Here, we examined the effect of microgroove-patterned substrate with spacings ranging from 1 to 10 µm on the differentiation of rat bone marrow-derived osteoclast precursors. Tartrate-resistant acid phosphatase (TRAP) staining and relative gene expression quantification showed that osteoclast differentiation was enhanced in substrate with 1 µm microgroove spacing compared with that in the other groups. Additionally, the ratio of podosome maturation stages in substrate with 1 µm microgroove spacing exhibited a distinct pattern, which was characterized by an increase in the ratio of belts and rings and a decrease in that of clusters. However, myosin II abolished the effects of topography on osteoclast differentiation. Overall, these showed that the reduction of myosin II tension in the podosome core by an integrin vertical vector increased podosome stability and promoted osteoclast differentiation in substrates with 1 µm microgroove spacing, including that microgroove design plays an important role in scaffolds for bone regeneration. STATEMENT OF SIGNIFICANCE: Reduction of myosin II tension in the podosome core, facilitated by an integrin vertical vector, resulted in an enhanced osteoclast differentiation, concomitant with an increase in podosome stability within 1-µm-spaced microgrooves. These findings are anticipated to serve as valuable indicators for the regulation of osteoclast differentiation through the manipulation of biomaterial surface topography in tissue engineering. Furthermore, this study contributes to the lucidation of the underlying mechanisms governing cellular differentiation by providing insights into the impact of the microtopographical environment.


Assuntos
Osteoblastos , Osteoclastos , Ratos , Animais , Osteoclastos/metabolismo , Diferenciação Celular , Remodelação Óssea , Integrinas/metabolismo
4.
Cell Biochem Funct ; 41(7): 845-856, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515551

RESUMO

The mechanical stimulation induced by poking cells with a glass needle activates Piezo1 receptors and the adenosine triphosphate (ATP) autocrine pathway, thus increasing intracellular Ca2+ concentration. The differences between the increase in intracellular Ca2+ concentration induced by cell poking and by ATP-only stimulation have not been investigated. In this study, we investigated the Ca2+ signaling mechanism induced by autocrine ATP release during Madin-Darby Canine Kidney cell membrane deformation by cell poking. The results suggest that the pathways for supplying Ca2+ into the cytoplasm were not identical between cell poking and conventional ATP stimulation. The functions of the G protein-coupled receptor (GPCR) subunits (G α $\alpha $ q, G ß Î³ $\beta \gamma $ ), ATP-activated receptor and the upstream Ca2+ release signal from the intracellular endoplasmic reticulum Ca2+ store, were investigated. The results show that G α $\alpha $ q plays a major role in the Ca2+ response evoked by ATP-only stimulation, while cell poking induces a Ca2+ response requiring the involvement of both G α $\alpha $ q and G ß Î³ $\beta \gamma $ units simultaneously. These results suggest that GPCR are not only activated by ATP-only stimulation or autocrine ATP release during Ca2+ signaling, but also activated by the mechanical effects of cell poking.

5.
PLoS One ; 17(12): e0275682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36538560

RESUMO

Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high water content of cartilage, one of the main physical stimuli sensed by chondrocytes is hydrostatic pressure. We previously showed that high pressure above 20 MPa induced gene expression changes in chondrocyte precursor cells similar to what is observed in OA. Micro-RNAs are small non-coding RNAs essential to many physiological and pathological process including OA. As the micro-RNA miR-155 has been found increased in OA chondrocytes, we investigated the effects of high pressure on the expression of the miR-155 host gene Mir155hg. The chondrocyte progenitor cell line ATDC5 was pressurized under hydrostatic pressure up to 25 MPa and the expression of Mir155hg or the resulting micro-RNAs were measured; pharmacological inhibitors were used to identify the signaling pathways involved in the regulation of Mir155hg. We found that Mir155hg is strongly and rapidly up-regulated by high, but not moderate, pressure in chondrocyte progenitor cells. This up-regulation likely involves the membrane channel pannexin-1 and several intracellular signaling molecules including PKC and Src. MiR-155-5p and -3p were also up-regulated by pressure though somewhat later than Mir155hg, and a set of known miR-155-5p target genes, including Ikbke, Smarca4 and Ywhae, was affected by pressure, suggesting that Mir155hg may have important roles in cartilage physiology.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , RNA Longo não Codificante , Humanos , Idoso , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pressão Hidrostática , Condrócitos/metabolismo , MicroRNAs/metabolismo , Osteoartrite/patologia , Cartilagem Articular/patologia , Apoptose , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445652

RESUMO

Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) is an autosomal dominant inherited disease characterized by arteriovenous malformations and hemorrhage. HHT1 is caused by mutations in ENDOGLIN, which encodes an ancillary receptor for Transforming Growth Factor-ß/Bone Morphogenetic Protein-9 expressed in all vascular endothelial cells. Haploinsufficiency is widely accepted as the underlying mechanism for HHT1. However, it remains intriguing that only some, but not all, vascular beds are affected, as these causal gene mutations are present in vasculature throughout the body. Here, we have examined the endoglin expression levels in the blood vessels of multiple organs in mice and in humans. We found a positive correlation between low basal levels of endoglin and the general prevalence of clinical manifestations in selected organs. Endoglin was found to be particularly low in the skin, the earliest site of vascular lesions in HHT1, and even undetectable in the arteries and capillaries of heterozygous endoglin mice. Endoglin levels did not appear to be associated with organ-specific vascular functions. Instead, our data revealed a critical endoglin threshold compatible with the haploinsufficiency model, below which endothelial cells independent of their tissue of origin exhibited abnormal responses to Vascular Endothelial Growth Factor. Our results support the development of drugs promoting endoglin expression as potentially protective.


Assuntos
Endoglina/fisiologia , Endotélio Vascular/patologia , Mutação , Telangiectasia Hemorrágica Hereditária/complicações , Doenças Vasculares/patologia , Animais , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo
7.
Biosens Bioelectron ; 191: 113463, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198171

RESUMO

An osmium-coated lensed fiber (OLF) probe combined with a silver-coated black silicon (SBS) substrate was used to generate a dielectrophoretic (DEP) force that traps bacteria and enables Raman signal detection from bacteria. The lensed fiber coated with a 2-nm osmium layer was used as an electrode for the DEP force and also as a lens to excite Raman signals. The black silicon coated with a 150-nm silver layer was used both as the surface-enhanced Raman scattering (SERS) substrate and the counter electrode. The enhanced Raman signal was collected by the same OLF probe and further analyzed with a spectrometer. For Raman measurements, a drop of bacterial suspension was placed between the OLF probe and the SBS substrate. By controlling the frequency of an AC voltage on the OLF probe and SBS substrate, a DEP force at 1 MHz concentrated bacteria on the SBS surface and removed the unbound micro-objects in the solution at 1 kHz. A bacteria concentration of 6 × 104 CFU/mL (colony forming units per mL) could be identified in less than 15 min, using a volume of only 1 µL, by recording the variation of the Raman peak at 740 cm-1.


Assuntos
Técnicas Biossensoriais , Silício , Bactérias , Análise Espectral Raman
8.
Ann Transl Med ; 8(21): 1400, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33313145

RESUMO

BACKGROUND: In liver tissue engineering, co-culturing hepatocytes with typical non-parenchymal hepatic cells to form cell aggregates is available to mimic the in vivo microenvironment and promote cell biological functions. With a modular assembly approach, endothelialized hepatic cell aggregates can be packed for perfusion culture, which enables the construction of large-scale liver tissues. Since tightly packed aggregates tend to fuse with each other and block perfusion flows, a loosely packed mode was introduced in our study. METHODS: Using an oxygen-permeable polydimethylsiloxane (PDMS)-based microwell device, highly dense endothelialized hepatic cell aggregates were generated as hepatic tissue elements by co-culturing hepatocellular carcinoma (HepG2) cells, Swiss 3T3 cells, and human umbilical vein endothelial cells (HUVECs). The co-cultured aggregates were then harvested and applied in a PDMS-fabricated bioreactor for 10 days of perfusion culture. To maintain appropriate interstitial spaces for stable perfusion, biodegradable poly-L-lactic acid (PLLA) scaffold fibers were used and mixed with the aggregates, forming a loosely packed mode. RESULTS: In a microwell co-culture, Swiss 3T3 cells significantly contributed to the formation of hepatic cell aggregates. HUVECs developed a peripheral distribution in aggregates for endothelialization. In the perfusion culture, compared with pure HepG2 aggregates, HepG2/Swiss 3T3/HUVECs co-cultured aggregates exhibited a higher level of cell proliferation and liver-specific function expression (i.e., glucose consumption and albumin secretion). Under the loosely packed mode, co-cultured aggregates showed a characteristic histological morphology with cell migration and adhesion to fibers. The assembled hepatic tissue elements were obtained with 32% of in vivo cell density. CONCLUSIONS: In a co-culture of HepG2, Swiss 3T3, and HUVECs, Swiss 3T3 cells were observed to be beneficial for the formation of endothelialized hepatic cell aggregates. Loosely packed aggregates enabled long-term perfusion culture with high viability and biological function. This study will guide us in constructing large-scale liver tissue models by way of aggregate-based modular assembly.

9.
Sci Rep ; 10(1): 9014, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488068

RESUMO

The uterus plays an important and unique role during pregnancy and is a dynamic organ subjected to mechanical stimuli. It has been reported that infertility occurs when the peristalsis is prevented, although its mechanisms remain unknown. In this study, we found that mechanical strain mimicking the peristaltic motion of the uterine smooth muscle layer enabled the endometrial stromal cells to acquire contractility. In order to mimic the peristalsis induced by uterine smooth muscle cells, cyclic tensile stretch was applied to human endometrial stromal cells. The results showed that the strained cells exerted greater contractility in three-dimensional collagen gels in the presence of oxytocin, due to up-regulated alpha-smooth muscle actin expression via the cAMP signaling pathway. These in vitro findings underscore the plasticity of the endometrial stromal cell phenotype and suggest the possibility of acquired contractility by these cells in vivo and its potential contribution to uterine contractile activity. This phenomenon may be a typical example of how a tissue passively acquires new contractile functions under mechanical stimulation from a neighboring tissue, enabling it to support the adjacent tissue's functions.


Assuntos
Endométrio/citologia , Miócitos de Músculo Liso/citologia , Células Estromais/fisiologia , Resistência à Tração , Actinas/antagonistas & inibidores , Actinas/metabolismo , Adulto , Células Cultivadas , Colágeno Tipo I/metabolismo , AMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Ionomicina/farmacologia , Isoquinolinas/farmacologia , Pessoa de Meia-Idade , Músculo Liso , Ocitocina/farmacologia , Peristaltismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Sulfonamidas/farmacologia , Regulação para Cima
10.
Med Eng Phys ; 76: 69-78, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883633

RESUMO

In order to address the remaining issues of fragile structure and insufficient mass transfer faced in modular assembly-based liver tissue engineering, a Raschig ring-like hollowed micro-scaffold was proposed and fabricated using poly-ε-caprolactone with 60% porosity and 11.4 mm2 effective surface area for cell immobilization. The method of cell inoculation, the types of cells for co-culture and the scalability of the proposed hollowed micro-scaffold in perfusion were all investigated to obtain an optimized organoid made of tissue modules. Extracellular matrix was found necessary to establish a hierarchical co-culture, and the triple co-culture of Human Hepatoma Hep G2 cells, liver sinusoid cell line TMNK-1 cells and fibroblasts (Swiss 3T3 cells) was recognized to be the most efficient to obtain higher cell attachment, proliferation and hepatic function. The equipped intersecting hollow channels provided in the micro-scaffold functioned as flow paths to promote mass transfer to the immobilized cells after the modules have been randomly packed into a bioreactor for perfusion culture, and resulted in enhanced albumin production and high cellular viability. Cell density comparable to those found in vivo were obtained in the perfused construct, which also maintained its rigid structure. Those results suggest that modular tissues made with hollowed micro-scaffold-based organoids hold great potential for scaling up tissue engineered constructs towards implantation.


Assuntos
Técnicas de Cocultura/instrumentação , Fígado/citologia , Microtecnologia/instrumentação , Organoides/metabolismo , Engenharia Tecidual , Albuminas/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo
11.
PLoS One ; 12(9): e0185394, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953959

RESUMO

Chondrocytes are known to be physiologically loaded with diverse physical factors such as compressive stress, shear stress and hydrostatic pressure. Although the effects of those mechanical stimuli onto various cell models have been widely studied, those of hypergravity have not yet been revealed clearly. Hereby, we hypothesized that the hypergravity affects relative positions of intracellular elements including nucleus and cytoskeletons due to their density differences, triggering mechanotransduction in the cell. The aim of this study was to investigate the effect of hypergravity on c-fos expression in the murine ATDC5 chondroprogenitor cells, as c-fos is a well known key regulator of cell proliferation and differentiation, including in chondrocytes. We first found that hypergravity down-regulated c-fos expression transiently via ROCK/Rho-GTP and PI3K signaling, and the down-regulation was suppressed by inhibition of actin polymerization.


Assuntos
Condrócitos/citologia , Regulação para Baixo , Guanosina Trifosfato/metabolismo , Hipergravidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Androstadienos/farmacologia , Animais , Linhagem Celular , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Wortmanina
12.
PLoS One ; 12(8): e0183226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813497

RESUMO

Due to the high water content of cartilage, hydrostatic pressure is likely one of the main physical stimuli sensed by chondrocytes. Whereas, in the physiological range (0 to around 10 MPa), hydrostatic pressure exerts mostly pro-chondrogenic effects in chondrocyte models, excessive pressures have been reported to induce detrimental effects on cartilage, such as increased apoptosis and inflammation, and decreased cartilage marker expression. Though some genes modulated by high pressure have been identified, the effects of high pressure on the global gene expression pattern have still not been investigated. In this study, using microarray technology and real-time PCR validation, we analyzed the transcriptome of ATDC5 chondrocyte progenitors submitted to a continuous pressure of 25 MPa for up to 24 h. Several hundreds of genes were found to be modulated by pressure, including some not previously known to be mechano-sensitive. High pressure markedly increased the expression of stress-related genes, apoptosis-related genes and decreased that of cartilage matrix genes. Furthermore, a large set of genes involved in the progression of osteoarthritis were also induced by high pressure, suggesting that hydrostatic pressure could partly mimic in vitro some of the genetic alterations occurring in osteoarthritis.


Assuntos
Perfilação da Expressão Gênica/métodos , Pressão Hidrostática/efeitos adversos , Osteoartrite/genética , Animais , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Linhagem Celular , Células Cultivadas , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
13.
Nat Commun ; 7: 13474, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845324

RESUMO

Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.


Assuntos
DNA/genética , Retroalimentação Fisiológica , Redes Reguladoras de Genes , Modelos Genéticos , Sequência de Bases , DNA/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética
14.
Tissue Eng Part C Methods ; 21(10): 1005-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25915185

RESUMO

The aim of this study was to evaluate how low-intensity pulsed ultrasound (LIPUS) modulates the effect of transforming growth factor-ß3 (TGF-ß3) on the differentiation of scaffold-free dedifferentiated bovine articular chondrocyte tissues toward a cartilage-like phenotype. Specifically, the effect of these stimuli on the expression of hypertrophic markers collagen type I, collagen type X, and cartilage-degrading collagenase gene expression for a scaffold-free model was analyzed. A bioreactor that applied LIPUS directly from the transducer through a silicone gel to a six-well plate containing the tissues allowed simple, sterile, and large-scale experiments. Tissues were subjected to LIPUS of 55 mW/cm(2) in a 200 µs burst sine wave of 1 MHz over a 10-day period with or without TGF-ß3 (10 ng/mL). Tissues exposed to TGF-ß3 had significantly increased glycosaminoglycan and total collagen protein production along with upregulated cartilage-specific gene expression, resulting in tissues with a higher Young's Modulus. However, these tissues had also upregulated gene expression for hypertrophic markers collagen type I, collagen type X, MMP-1, MMP-13, MMP-2, and also an increase in the phosphorylation of p38. The expression of these matrix-degrading enzymes was remediated by hypertrophic development and differentiate dedifferentiated bovine articular chondrocytes towards a chondrogenic lineage allowing it to be a valuable tool in cartilage tissue engineering.


Assuntos
Cartilagem Articular/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Fator de Crescimento Transformador beta3/farmacologia , Ondas Ultrassônicas , Animais , Bovinos
15.
Biosci Biotechnol Biochem ; 79(2): 239-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25348678

RESUMO

In this study, we developed a novel bioreactor to load hydrostatic pressure to promote chondrogenesis of prechondrogenic ATDC5 cells in as little as 3 days. Furthermore, we showed that loading hydrostatic pressure induced the upregulation of PKR, which is known to participate in mechanotransduction in various models.


Assuntos
Reatores Biológicos , Condrogênese/genética , Regulação para Cima , eIF-2 Quinase/genética , Animais , Linhagem Celular , Pressão Hidrostática , Mecanotransdução Celular , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Methods ; 67(2): 234-49, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24495737

RESUMO

In living organisms, the integration of signals from the environment and the molecular computing leading to a cellular response are orchestrated by Gene Regulatory Networks (GRN). However, the molecular complexity of in vivo genetic regulation makes it next to impossible to describe in a quantitative manner. Reproducing, in vitro, reaction networks that could mimic the architecture and behavior of in vivo networks, yet lend themselves to mathematical modeling, represents a useful strategy to understand, and even predict, the function of GRN. In this paper, we define a set of in vitro, DNA-based molecular transformations that can be linked to each other in such a way that the product of one transformation can activate or inhibit the production of one or several other DNA compounds. Therefore, these reactions can be wired in arbitrary networks. This approach provides an experimental way to reproduce the dynamic features of genetic regulation in a test tube. We introduce the rules to design the necessary DNA species, a guide to implement the chemical reactions and ways to optimize the experimental conditions. We finally show how this framework, or "DNA toolbox", can be used to generate an inversion module, though many other behaviors, including oscillators and bistable switches, can be implemented.


Assuntos
Modelos Genéticos , Sequência de Bases , DNA/química , DNA/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Técnicas de Amplificação de Ácido Nucleico , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/genética
17.
Biotechnol Prog ; 30(1): 178-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24265060

RESUMO

Spherical three-dimensional (3D) cellular aggregates are valuable for various applications such as regenerative medicine or cell-based assays due to their stable and high functionality. However, previous methods to form aggregates have shown drawbacks, being labor-intensive, showing low productivity per unit area or volume and difficulty to form homogeneous aggregates. We proposed a novel strategy based on oxygen-permeable polydimethylsiloxane (PDMS) honeycomb microwell sheets, which can theoretically supply about 80 times as much oxygen as conventional polystyrene culture dishes, to produce recoverable aggregates in controllable sizes using mouse insulinoma cells (MIN6-m9). In 48 hours of culture, the PDMS sheets produced aggregates whose diameters were strictly controlled (≃32, 60, 90, 150 and 280 mm) even at an inoculum density eight times higher (8.0×105 cells/cm(2) ) than that of normal confluent monolayers (1.0×105 cells/cm(2) ). Measurement of the oxygen tension near the cell layer and glucose/lactate analysis clearly showed that cells exhibit aerobic respiration on the PDMS-based culture system. Glucose-responsive insulin secretion of the recovered aggregates showed that the aggregates around 90 mm in diameter secreted the largest amounts of insulin. This confirmed the advantages of 3D cellular organization and the existence of a suitable aggregate size, above which excess organization leads to a decreased metabolic response. These results demonstrated that this microwell-based PDMS culture system provides a promising method to form size-regulated and better functioning 3D cellular aggregates of various kinds of cells with a high yield per surface area.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Dimetilpolisiloxanos , Desenho de Equipamento , Insulina/análise , Ácido Láctico/análise , Ácido Láctico/metabolismo , Camundongos , Oxigênio/metabolismo
18.
Biomaterials ; 35(7): 2245-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24342724

RESUMO

Recent reports demonstrate that enhanced focal adhesion (FA) between cells and the extracellular matrix (ECM) and intracellular actin polymerization (AP) upregulates cellular functions such as proliferation, stem-cell fate and differentiation. Purposed to accelerate osteogenic differentiation, enhancement of FAs and AP of cells was induced by adding a tailor-made micropit (tMP, 3 × 3 µm(2)) with different heights (2 or 4 µm). The tMP surface was examined for its differentiation efficiency using mouse mesenchymal stem cells, C3H10T1/2. Though the cell spreading area was not affected by the surface topography, cells on the tMP substrates had enhanced FAs which were significantly confined inside the micropits, increased actin polymerization and traction forces, and osteogenic differentiation. Further experiments with Y-27632 and Blebbistatin, which specifically regulate FA or AP functions, demonstrated that the tMP-induced acceleration of osteogenic differentiation was caused by the rho-associated, coiled-coil containing protein kinase (ROCK) and nonmuscle myosin II (NM II), which are key molecules of the RhoA/ROCK signaling pathway. The tMP is applicable as an osteo-active substrate for the instructive bone cell differentiation and population.


Assuntos
Actinas/química , Biopolímeros/química , Diferenciação Celular , Adesões Focais , Células-Tronco Mesenquimais/citologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Propriedades de Superfície
19.
J Biomech ; 47(2): 354-9, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24326098

RESUMO

Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.


Assuntos
Condrócitos/enzimologia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/genética , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/antagonistas & inibidores , Células-Tronco/enzimologia , Animais , Linhagem Celular Tumoral , Colesterol/biossíntese , Colesterol/deficiência , Colesterol/metabolismo , Condrócitos/patologia , Regulação para Baixo/genética , Ácidos Graxos Dessaturases/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Pressão Hidrostática , Lipídeos de Membrana/genética , Camundongos , Células-Tronco/patologia , Regulação para Cima/genética
20.
Arterioscler Thromb Vasc Biol ; 33(11): 2577-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24072698

RESUMO

OBJECTIVE: To investigate the role of bone morphogenetic proteins (BMPs) on α-B-crystallin (CRYAB) expression and its physiological consequences on endothelial cells (ECs). APPROACH AND RESULTS: We report that the gene encoding for the small heat shock protein, CRYAB, is a transcriptional target of the BMP signaling pathway. We demonstrate that CRYAB expression is upregulated strongly by BMPs in an EC line and in human lung microvascular ECs and human umbilical vein ECs. We show that BMP signals through the BMPR2-ALK1 pathway to upregulate CRYAB expression through a transcriptional indirect mechanism involving Id1. We observed that the known antiapoptotic effect of the BMPs is, in part, because of the upregulation of CRYAB expression in EC. We also show that cryab is downregulated in vivo, in a mouse model of pulmonary arterial hypertension induced by chronic hypoxia where the BMP pathway is downregulated. CONCLUSIONS: We demonstrate a cross-talk between BMPs and CRYAB and a major effect of this regulatory interaction on resistance to apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , Cadeia B de alfa-Cristalina/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Hipertensão Pulmonar Primária Familiar , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/metabolismo , Fatores de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/patologia , Camundongos , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Cadeia B de alfa-Cristalina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...