Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Biol Anthropol ; 184(2): e24901, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445298

RESUMO

OBJECTIVES: Estimation of body mass from skeletal metrics can reveal important insights into the paleobiology of archeological or fossil remains. The standard approach constructs predictive equations from postcrania, but studies have questioned the reliability of traditional measures. Here, we examine several skeletal features to assess their accuracy in predicting body mass. MATERIALS AND METHODS: Antemortem mass measurements were compared with common skeletal dimensions from the same animals postmortem, using 115 rhesus macaques (male: n = 43; female: n = 72). Individuals were divided into training (n = 58) and test samples (n = 57) to build and assess Ordinary Least Squares or multivariate regressions by residual sum of squares (RSS) and AIC weights. A leave-one-out approach was implemented to formulate the best fit multivariate models, which were compared against a univariate and a previously published catarrhine body-mass estimation model. RESULTS: Femur circumference represented the best univariate model. The best model overall was composed of four variables (femur, tibia and fibula circumference and humerus length). By RSS and AICw, models built from rhesus macaque data (RSS = 26.91, AIC = -20.66) better predicted body mass than did the catarrhine model (RSS = 65.47, AIC = 20.24). CONCLUSION: Body mass in rhesus macaques is best predicted by a 4-variable equation composed of humerus length and hind limb midshaft circumferences. Comparison of models built from the macaque versus the catarrhine data highlight the importance of taxonomic specificity in predicting body mass. This paper provides a valuable dataset of combined somatic and skeletal data in a primate, which can be used to build body mass equations for fragmentary fossil evidence.


Assuntos
Macaca mulatta , Animais , Macaca mulatta/anatomia & histologia , Feminino , Masculino , Antropologia Física/métodos , Peso Corporal , Osso e Ossos/anatomia & histologia , Úmero/anatomia & histologia
2.
Am J Biol Anthropol ; : e24920, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447005

RESUMO

OBJECTIVES: Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS: Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS: Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION: Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.

3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260273

RESUMO

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.

4.
Geroscience ; 46(2): 2107-2122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853187

RESUMO

Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.


Assuntos
Antígenos HLA-DR , Alienação Social , Masculino , Feminino , Animais , Humanos , Macaca mulatta , Linfócitos T CD8-Positivos , Inflamação
5.
Sci Adv ; 9(41): eadh1914, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824616

RESUMO

Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.


Assuntos
Encéfalo , Multiômica , Animais , Macaca mulatta/genética , Transcriptoma
6.
Neurosci Biobehav Rev ; 154: 105424, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827475

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.


Assuntos
Envelhecimento , Comportamento Social , Animais , Macaca mulatta/fisiologia , Biologia
7.
Microbiol Spectr ; : e0297423, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750731

RESUMO

While skin microbes are known to mediate human health and disease, there has been minimal research on the interactions between skin microbiota, social behavior, and year-to-year effects in non-human primates-important animal models for translational biomedical research. To examine these relationships, we analyzed skin microbes from 78 rhesus macaques living on Cayo Santiago Island, Puerto Rico. We considered age, sex, and social group membership, and characterized social behavior by assessing dominance rank and patterns of grooming as compared to nonsocial behaviors. To measure the effects of a shifting environment, we sampled skin microbiota (based on sequence analysis of the 16S rRNA V4 region) and assessed weather across sampling periods between 2013 and 2015. We hypothesized that, first, monkeys with similar social behavior and/or in the same social group would possess similar skin microbial composition due, in part, to physical contact, and, second, microbial diversity would differ across sampling periods. We found significant phylum-level differences between social groups in the core microbiome as well as an association between total grooming rates and alpha diversity in the complete microbiome, but no association between microbial diversity and measures of rank or other nonsocial behaviors. We also identified alpha and beta diversity differences in microbiota and differential taxa abundance across two sampling periods. Our findings indicate that social dynamics interact with yearly environmental changes to shape the skin microbiota in rhesus macaques, with potential implications for understanding the factors affecting the microbiome in humans, which share many biological and social characteristics with these animals. IMPORTANCE Primate studies are valuable for translational and evolutionary insights into the human microbiome. The majority of primate microbiome studies focus on the gut, so less is known about the factors impacting the microbes on skin and how their links affect health and behavior. Here, we probe the impact of social interactions and the yearly environmental changes on food-provisioned, free-ranging monkeys living on a small island. We expected animals that lived together and groomed each other would have more similar microbes on their skin, but surprisingly found that the external environment was a stronger influence on skin microbiome composition. These findings have implications for our understanding of the human skin microbiome, including potential manipulations to improve health and treat disease.

8.
Mol Ecol Resour ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602981

RESUMO

Monitoring genetic diversity in wild populations is a central goal of ecological and evolutionary genetics and is critical for conservation biology. However, genetic studies of nonmodel organisms generally lack access to species-specific genotyping methods (e.g. array-based genotyping) and must instead use sequencing-based approaches. Although costs are decreasing, high-coverage whole-genome sequencing (WGS), which produces the highest confidence genotypes, remains expensive. More economical reduced representation sequencing approaches fail to capture much of the genome, which can hinder downstream inference. Low-coverage WGS combined with imputation using a high-confidence reference panel is a cost-effective alternative, but the accuracy of genotyping using low-coverage WGS and imputation in nonmodel populations is still largely uncharacterized. Here, we empirically tested the accuracy of low-coverage sequencing (0.1-10×) and imputation in two natural populations, one with a large (n = 741) reference panel, rhesus macaques (Macaca mulatta), and one with a smaller (n = 68) reference panel, gelada monkeys (Theropithecus gelada). Using samples sequenced to coverage as low as 0.5×, we could impute genotypes at >95% of the sites in the reference panel with high accuracy (median r2 ≥ 0.92). We show that low-coverage imputed genotypes can reliably calculate genetic relatedness and population structure. Based on these data, we also provide best practices and recommendations for researchers who wish to deploy this approach in other populations, with all code available on GitHub (https://github.com/mwatowich/LoCSI-for-non-model-species). Our results endorse accurate and effective genotype imputation from low-coverage sequencing, enabling the cost-effective generation of population-scale genetic datasets necessary for tackling many pressing challenges of wildlife conservation.

9.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37522525

RESUMO

Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.


Assuntos
Hipopigmentação , Monofenol Mono-Oxigenase , Animais , Estudo de Associação Genômica Ampla , Macaca mulatta/genética , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , Fenótipo
10.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043542

RESUMO

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Assuntos
Leishmania , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , Humanos , Phlebotomus/parasitologia , Psychodidae/parasitologia , Leishmania/genética , Genômica
11.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747827

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.

12.
Nat Neurosci ; 25(12): 1714-1723, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424430

RESUMO

Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.


Assuntos
Doenças Neurodegenerativas , Feminino , Masculino , Humanos , Animais , Macaca mulatta , Transcriptoma , Envelhecimento/genética , Meio Social , Núcleo Solitário
13.
Evolution ; 76(8): 1776-1789, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35790204

RESUMO

A defining feature of catarrhine primates is uniform trichromacy-the ability to distinguish red (long; L), green (medium; M), and blue (short; S) wavelengths of light. Although the tuning of photoreceptors is conserved, the ratio of L:M cones in the retina is variable within and between species, with human cone ratios differing from other catarrhines. Yet, the sources and structure of variation in cone ratios are poorly understood, precluding a broader understanding of color vision variability. Here, we report a large-scale study of a pedigreed population of rhesus macaques (Macaca mulatta). We collected foveal RNA and analyzed opsin gene expression using cDNA and estimated additive genetic variance of cone ratios. The average L:M ratio and standard error was 1.03:1 ± 0.02. There was no age effect, and genetic contribution to variation was negligible. We found marginal sex effects with females having larger ratios than males. S cone ratios (0.143:1 ± 0.002) had significant genetic variance with a heritability estimate of 43% but did not differ between sexes or age groups. Our results contextualize the derived human condition of L-cone dominance and provide new information about the heritability of cone ratios and variation in primate color vision.


Assuntos
Visão de Cores , Células Fotorreceptoras Retinianas Cones , Animais , Visão de Cores/genética , Feminino , Humanos , Macaca mulatta/genética , Masculino , Opsinas , Retina
14.
Am J Biol Anthropol ; 177(2): 314-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35571460

RESUMO

Objective: Reconstructing the social lives of extinct primates is possible only through an understanding of the interplay between morphology, sexual selection pressures, and social behavior in extant species. Somatic sexual dimorphism is an important variable in primate evolution, in part because of the clear relationship between the strength and mechanisms of sexual selection and the degree of dimorphism. Here, we examine body size dimorphism across ontogeny in male and female rhesus macaques to assess whether it is primarily achieved via bimaturism as predicted by a polygynandrous mating system, faster male growth indicating polygyny, or both. Methods: We measured body mass in a cross-sectional sample of 364 free-ranging rhesus macaques from Cayo Santiago, Puerto Rico to investigate size dimorphism: 1) across the lifespan; and 2) as an outcome of sex-specific growth strategies, including: a) age of maturation; b) growth rate; and c) total growth duration, using regression models fit to sex-specific developmental curves. Results: Significant body size dimorphism was observed by prime reproductive age with males 1.51 times the size of females. Larger male size resulted from a later age of maturation (males: 6.8-7.8 years versus females: 5.5-6.5 years; logistic model) and elevated growth velocity through the pre-prime period (LOESS model). Though males grew to larger sizes overall, females maintained adult size for longer before senescence (quadratic model). Discussion: The ontogeny of size dimorphism in rhesus macaques is achieved by bimaturism and a faster male growth rate. Our results provide new data for understanding the development and complexities of primate dimorphism.


Assuntos
Reprodução , Caracteres Sexuais , Animais , Tamanho Corporal , Estudos Transversais , Feminino , Macaca mulatta , Masculino
15.
Sci Adv ; 8(15): eabl5794, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417242

RESUMO

Reproduction and survival in most primate species reflects management of both competitive and cooperative relationships. Here, we investigated the links between neuroanatomy and sociality in free-ranging rhesus macaques. In adults, the number of social partners predicted the volume of the mid-superior temporal sulcus and ventral-dysgranular insula, implicated in social decision-making and empathy, respectively. We found no link between brain structure and other key social variables such as social status or indirect connectedness in adults, nor between maternal social networks or status and dependent infant brain structure. Our findings demonstrate that the size of specific brain structures varies with the number of direct affiliative social connections and suggest that this relationship may arise during development. These results reinforce proposed links between social network size, biological success, and the expansion of specific brain circuits.


Assuntos
Encéfalo , Comportamento Social , Animais , Encéfalo/diagnóstico por imagem , Humanos , Macaca mulatta , Lobo Temporal
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35131902

RESUMO

Weather-related disasters are increasing in frequency and severity, leaving survivors to cope with ensuing mental, financial, and physical hardships. This adversity can exacerbate existing morbidities, trigger new ones, and increase the risk of mortality-features that are also characteristic of advanced age-inviting the hypothesis that extreme weather events may accelerate aging. To test this idea, we examined the impact of Hurricane Maria and its aftermath on immune cell gene expression in large, age-matched, cross-sectional samples from free-ranging rhesus macaques (Macaca mulatta) living on an isolated island. A cross section of macaques was sampled 1 to 4 y before (n = 435) and 1 y after (n = 108) the hurricane. Hurricane Maria was significantly associated with differential expression of 4% of immune-cell-expressed genes, and these effects were correlated with age-associated alterations in gene expression. We further found that individuals exposed to the hurricane had a gene expression profile that was, on average, 1.96 y older than individuals that were not-roughly equivalent to an increase in 7 to 8 y of a human life. Living through an intense hurricane and its aftermath was associated with expression of key immune genes, dysregulated proteostasis networks, and greater expression of inflammatory immune cell-specific marker genes. Together, our findings illuminate potential mechanisms through which the adversity unleashed by extreme weather and potentially other natural disasters might become biologically embedded, accelerate age-related molecular immune phenotypes, and ultimately contribute to earlier onset of disease and death.


Assuntos
Envelhecimento/imunologia , Macaca/imunologia , Sobreviventes/psicologia , Fatores Etários , Animais , Estudos Transversais , Tempestades Ciclônicas , Desastres , Desastres Naturais/mortalidade , Fatores de Risco
17.
Physiol Behav ; 241: 113560, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454245

RESUMO

Social integration and social status can substantially affect an individual's health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.


Assuntos
Comportamento Social , Meio Social , Animais , Asseio Animal , Macaca mulatta
18.
Ecol Evol ; 11(10): 5742-5758, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026044

RESUMO

A recent focus in community ecology has been on how within-species variability shapes interspecific niche partitioning. Primate color vision offers a rich system in which to explore this issue. Most neotropical primates exhibit intraspecific variation in color vision due to allelic variation at the middle-to-long-wavelength opsin gene on the X chromosome. Studies of opsin polymorphisms have typically sampled primates from different sites, limiting the ability to relate this genetic diversity to niche partitioning. We surveyed genetic variation in color vision of five primate species, belonging to all three families of the primate infraorder Platyrrhini, found in the Yasuní Biosphere Reserve in Ecuador. The frugivorous spider monkeys and woolly monkeys (Ateles belzebuth and Lagothrix lagotricha poeppigii, family Atelidae) each had two opsin alleles, and more than 75% of individuals carried the longest-wavelength (553-556 nm) allele. Among the other species, Saimiri sciureus macrodon (family Cebidae) and Pithecia aequatorialis (family Pitheciidae) had three alleles, while Plecturocebus discolor (family Pitheciidae) had four alleles-the largest number yet identified in a wild population of titi monkeys. For all three non-atelid species, the middle-wavelength (545 nm) allele was the most common. Overall, we identified genetic evidence of fourteen different visual phenotypes-seven types of dichromats and seven trichromats-among the five sympatric taxa. The differences we found suggest that interspecific competition among primates may influence intraspecific frequencies of opsin alleles. The diversity we describe invites detailed study of foraging behavior of different vision phenotypes to learn how they may contribute to niche partitioning.

19.
Curr Biol ; 31(11): 2299-2309.e7, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836140

RESUMO

Climate change is increasing the frequency and intensity of weather-related disasters such as hurricanes, wildfires, floods, and droughts. Understanding resilience and vulnerability to these intense stressors and their aftermath could reveal adaptations to extreme environmental change. In 2017, Puerto Rico suffered its worst natural disaster, Hurricane Maria, which left 3,000 dead and provoked a mental health crisis. Cayo Santiago island, home to a population of rhesus macaques (Macaca mulatta), was devastated by the same storm. We compared social networks of two groups of macaques before and after the hurricane and found an increase in affiliative social connections, driven largely by monkeys most socially isolated before Hurricane Maria. Further analysis revealed monkeys invested in building new relationships rather than strengthening existing ones. Social adaptations to environmental instability might predispose rhesus macaques to success in rapidly changing anthropogenic environments.


Assuntos
Animais Selvagens/fisiologia , Animais Selvagens/psicologia , Tempestades Ciclônicas , Macaca mulatta/fisiologia , Macaca mulatta/psicologia , Comportamento Social , Animais , Feminino , Asseio Animal , Masculino , Porto Rico
20.
Microbiome ; 9(1): 68, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752735

RESUMO

BACKGROUND: An individual's microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. RESULTS: Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. CONCLUSIONS: Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. Video abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Feminino , Microbioma Gastrointestinal/genética , Macaca mulatta , Camundongos , Microbiota/genética , Porto Rico , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...