Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 244: 125478, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37336376

RESUMO

Thermoplastic starch/polyvinyl alcohol (TPS/PVA) films have limitations for being used in long-term applications due to starch retrogradation. This leads to plasticizer migration, especially when low molecular weight plasticizers such as glycerol, are used. In this work, we employed mixtures of oligomers based on glycerol citrates with higher molecular weight than glycerol as plasticizers for potato-based TPS/PVA blends obtained by melt-mixing. This constitutes an alternative to reduce plasticizer migration while keeping high swelling degree, and to provide high mechanical performance. The novelty lies in the usage of these oligomers by melt-mixing technique, aspect not deeply explored previously and that represents the first step towards industrial scalability. Prior to the blending process, oligomers mixtures were prepared with different molar ratios of citric acid (0-40 mol%) and added them. This minimizes the undesirable hydrolysis effect of free carboxylic groups on starch chains. The results demonstrated that the migration of plasticizers in TPS/PVA blends decreased by up to 70 % when the citric acid content increased. This reduction was attributed to the higher molecular weight (the majority in the range 764-2060 Da) and the 3D structure of the oligomers compared to using raw glycerol. Furthermore, the films exhibited a 150 % increase in Young's modulus and tensile strength without a reduction in elongation at break, while maintaining a high gel content, due to a moderate crosslinking.


Assuntos
Plastificantes , Álcool de Polivinil , Álcool de Polivinil/química , Plastificantes/química , Glicerol/química , Poliésteres , Ácido Cítrico/química , Amido/química
2.
Polymers (Basel) ; 15(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050402

RESUMO

The first step towards the production and marketing of bioplastics based on renewable and sustainable materials is to know their behavior at a semi-industrial scale. For this reason, in this work, the properties of thermoplastic starch (TPS)/polyvinyl alcohol (PVA) films plasticized by a green solvent, as the 1-ethyl-3-methylimidazolium acetate ([Emim+][Ac-]) ionic liquid, produced by melt-mixing were studied. These blends were prepared with a different content of [Emim+][Ac-] (27.5-42.5 %wt.) as a unique plasticizer. According to the results, this ionic liquid is an excellent plasticizer due to the transformation of the crystalline structure of the starch to an amorphous state, the increase in flexibility, and the drop in Tg, as the [Emim+][Ac-] amount increases. These findings show that the properties of these biomaterials could be modified in the function of [Emim+][Ac-] content in the formulations of TPS, depending on their final use, thus becoming a functional alternative to conventional polymers.

3.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111671

RESUMO

The anticancer drug ibrutinib (IB), also known as PCI-32765, is a compound that irreversibly inhibits Bruton's tyrosine kinase (BTK) and was initially developed as a treatment option for B-cell lineage neoplasms. Its action is not limited to B-cells, as it is expressed in all hematopoietic lineages and plays a crucial role in the tumor microenvironment. However, clinical trials with the drug have resulted in conflicting outcomes against solid tumors. In this study, folic acid-conjugated silk nanoparticles were used for the targeted delivery of IB to the cancer cell lines HeLa, BT-474, and SKBR3 by exploiting the overexpression of folate receptors on their surfaces. The results were compared with those of control healthy cells (EA.hy926). Cellular uptake studies confirmed total internalization of the nanoparticles functionalized by this procedure in the cancer cells after 24 h, compared to nanoparticles not functionalized with folic acid, suggesting that cellular uptake was mediated by folate receptors overexpressed in the cancer cells. The results indicate that the developed nanocarrier can be used for drug targeting applications by enhancing IB uptake in cancer cells with folate receptor overexpression.

4.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771806

RESUMO

The development of new biomaterials from natural fibres in the field of biomedicine have attracted great interest in recent years. One of the most studied fibres has been silk fibroin produced by the Bombyx mori worm, due to its excellent mechanical properties and its biodegradability and bioavailability. Among the different biomaterials that can be prepared from silk fibroin, hydrogels have attracted considerable attention due to their potential use in different fields, such as scaffolding, cell therapy and biomedical application. Hydrogels are essentially a three-dimensional network of flexible polymer chains that absorb considerable amounts of water and can be loaded with drugs and/or cells inside to be used in a wide variety of applications. Here we present a simple sonication process for the preparation of curcumin-hyaluronic acid-silk fibroin hydrogels. Different grades of hydrogels were prepared by controlling the relative amounts of their components. The hydrogels were physically and morphologically characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) and their biological activity was tested in terms of cell viability in a fibroblast cell line.

5.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679262

RESUMO

A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.

6.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364091

RESUMO

When the [Ru(p-cymene)(µ-Cl)Cl]2 complex is made to react, in dichloromethane, with the following ligands: 2-aminobenzonitrile (2abn), 4-aminobenzonitrile (4abn), 2-aminopyridine (2ampy) and 4-aminopyridine (4ampy), after addition of hexane, the following compounds are obtained: [Ru(p-cymene)Cl2(2abn)] (I), [Ru(p-cymene)Cl2(4abn)] (II), [Ru(p-cymene)Cl2(2ampy] (III) and [Ru(p-cymene)Cl2(µ-(4ampy)] (IV). All the compounds are characterized by elemental analysis of carbon, hydrogen and nitrogen, proton nuclear magnetic resonance, COSY 1H-1H, high-resolution mass spectrometry (ESI), thermogravimetry and single-crystal X-ray diffraction (the crystal structure of III is reported and compared with the closely related literature of II). The cytotoxicity effects of complexes were described for cervical cancer HeLa cells via 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. The results demonstrate a low in vitro anticancer potential of the complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Rutênio/química , Células HeLa , Complexos de Coordenação/química , Linhagem Celular Tumoral , Antineoplásicos/química
7.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160487

RESUMO

In recent years, silk fibroin nanoparticles (SFNs) have been consolidated as drug delivery systems (DDSs) with multiple applications in personalized medicine. The design of a simple, inexpensive, and scalable preparation method is an objective pursued by many research groups. When the objective is to produce nanoparticles suitable for biomedical uses, their sterility is essential. To achieve sufficient control of all the crucial stages in the process and knowledge of their implications for the final characteristics of the nanoparticles, the present work focused on the final stage of sterilization. In this work, the sterilization of SFNs was studied by comparing the effect of different available treatments on the characteristics of the nanoparticles. Two different sterilization methods, gamma irradiation and autoclaving, were tested, and optimal conditions were identified to achieve the sterilization of SFNs by gamma irradiation. The minimum irradiation dose to achieve sterilization of the nanoparticle suspension without changes in the nanoparticle size, polydispersity, or Z-potential was determined to be 5 kiloGrays (kGy). These simple and safe methods were successfully implemented for the sterilization of SFNs in aqueous suspension and facilitate the application of these nanoparticles in medicine.

8.
Polymers (Basel) ; 13(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578069

RESUMO

Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has drawn increasing attention because of its remarkable bioactive properties, including anti-inflammatory, anticancer and antibacterial activities. The aim of this study was to synthesize and characterize RA-loaded silk fibroin nanoparticles (RA-SFNs) in terms of their physical-chemical features and composition, and to investigate their antitumor activity against human cervical carcinoma and breast cancer cell lines (HeLa and MCF-7). Compared with the free form, RA bioavailability was enhanced when the drug was adsorbed onto the surface of the silk fibroin nanoparticles (SFNs). The resulting particle diameter was 255 nm, with a polydispersity index of 0.187, and the Z-potential was -17 mV. The drug loading content of the RA-SFNs was 9.4 wt.%. Evaluation of the in vitro drug release of RA from RA-SFNs pointed to a rapid release in physiological conditions (50% of the total drug content was released in 0.5 h). Unloaded SFNs exhibited good biocompatibility, with no significant cytotoxicity observed during the first 48 h against HeLa and MCF-7 cancer cells. In contrast, cell death increased in a concentration-dependent manner after treatment with RA-SFNs, reaching an IC50 value of 1.568 and 1.377 mg/mL on HeLa and MCF-7, respectively. For both cell lines, the IC50 of free RA was higher. The cellular uptake of the nanoparticles studied was increased when RA was loaded on them. The cell cycle and apoptosis studies revealed that RA-SFNs inhibit cell proliferation and induce apoptosis on HeLa and MCF-7 cell lines. It is concluded, therefore, that the RA delivery platform based on SFNs improves the antitumor potential of RA in the case of the above cancers.

9.
Molecules ; 25(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142775

RESUMO

In this work, the cytotoxic behavior of six ruthenium(II) complexes of stoichiometry [(η6-p-cymene)RuCl2L] (I-VI), L = 4-cyanopyridine (I), 2-aminophenol (II), 4-aminophenol (III), pyridazine (IV), and [(η6-p-cymene)RuClL2]PF6; L = cyanopyridine (V), L = 2-aminophenol(VI) towards three cell lines was studied. Two of them, HeLa and MCF-7, are human carcinogenic cells from cervical carcinoma and human breast cancer, respectively. A comparison with healthy cells was carried out with BGM cells which are monkey epithelial cells of renal origin. The behavior of complex II exhibits selectivity towards healthy cells, which is a promising feature for use in cancer treatment since it might reduce the side effects of most current therapies.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Cimenos/química , Rutênio/química , Aminofenóis/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células MCF-7 , Nitrilas/química , Piridazinas/química , Piridinas/química
10.
Pharmaceutics ; 12(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977658

RESUMO

Nanotechnology has enabled the development of novel therapeutic strategies such as targeted nanodrug delivery systems, control and stimulus-responsive release mechanisms, and the production of theranostic agents. As a prerequisite for the use of nanoparticles as drug delivery systems, the amount of loaded drug must be precisely quantified, a task for which two approaches are currently used. However, both approaches suffer from the inefficiencies of drug extraction and of the solid-liquid separation process, as well as from dilution errors. This work describes a new, reliable, and simple method for direct drug quantification in polymeric nanoparticles using attenuated total reflection Fourier transform infrared spectroscopy, which can be adapted for a wide variety of drug delivery systems. Silk fibroin nanoparticles and naringenin were used as model polymeric nanoparticle carrier and drug, respectively. The specificity, linearity, detection limit, precision, and accuracy of the spectroscopic approach were determined in order to validate the method. A good linear relation was observed within 0.00 to 7.89% of naringenin relative mass with an R2 of 0.973. The accuracy was determined by the spike and recovery method. The results showed an average 104% recovery. The limit of detection and limit of quantification of the drug loading content were determined to be 0.3 and 1.0%, respectively. The method's robustness is demonstrated by the notable similarities between the calibrations carried out using two different equipment setups at two different institutions.

11.
Polymers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516911

RESUMO

Silk fibroin from Bombyx mori caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein's secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches. The infrared spectrum of silk fibroin fibers shows that they are composed of 58% ß-sheet, 9% turns, and 33% irregular and/or turn-like structures. When fibroin was dissolved in ionic liquids, its amide I band resembled that of soluble silk and no ß-sheet absorption was detected. Silk fibroin nanoparticles regenerated from the ionic liquid solution exhibited an amide I band that resembled that of the silk fibers but had a reduced ß-sheet content and a corresponding higher content of turns, suggesting an incomplete turn-to-sheet transition during the regeneration process. Both the analysis of the experimental infrared spectrum and spectrum calculations suggest a particular type of ß-sheet structure that was involved in this deficiency, whereas the two other types of ß-sheet structure found in silk fibroin fibers were readily formed.

12.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290154

RESUMO

Naringenin (NAR), a flavonoid present in a variety of fruits, vegetables and herbs, exhibits a wide range of pharmacological effects, including anticancer activity. Nevertheless, its application in cancer therapy is limited due to its low bioavailability at the tumour site because of its poor solubility in water and slow dissolution rate. To improve the therapeutic efficacy of NAR, emergent research is looking into using nanocarriers. Silk fibroin (SF), from the Bombyx mori silkworm, is a biocompatible and biodegradable polymer with excellent mechanical properties and an amphiphilic chemistry that make it a promising candidate as a controlled release drug system. The aim of this work is to synthesize naringenin-loaded silk fibroin nanoparticles (NAR-SFNs) by dissolving the SF in the ionic liquid 1-ethyl-3-methylimidazolium acetate, using high-power ultrasounds and rapid desolvation in methanol followed by the adsorption of NAR. The NAR-SFNs were characterized by dynamic light scattering, Fourier transform infrared spectroscopy and thermogravimetric analysis. The drug loading content and encapsulation efficiency were calculated. The drug release profile best fitted a first order equation. The cytotoxicity effects of free NAR, bare silk fibroin nanoparticles (SFNs) and NAR-SFNs were assessed on HeLa and EA.hy926 cells via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated the higher in vitro anticancer potential of synthesized NAR-SFNs than that of free NAR in HeLa cancer cells.

13.
Polymers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835438

RESUMO

Several studies have stated that the process used for sericin removal, or degumming, from silk cocoons has a strong impact in the silk fibroin integrity and consequently in their mechanical or biochemical properties after processing it into several biomaterials (e.g. fibers, films or scaffolds) but still, there is a lack of information of the impact on the features of silk nanoparticles. In this work, silk cocoons were degummed following four standard methods: autoclaving, short alkaline (Na2CO3) boiling, long alkaline (Na2CO3) boiling and ultrasounds. The resultant silk fibroin fibers were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate and used for nanoparticle synthesis by rapid desolvation in polar organic solvents. The relative efficiencies of the degumming processes and the integrity of the resulting fibroin fibers obtained were analyzed by mass loss, optical microscopy, thermogravimetric analysis, infrared spectroscopy and SDS-PAGE. Particle sizes and morphology were analyzed by Dynamic Light Scattering and Field Emission Scanning Electronic Microscopy. The results showed that the different treatments had a remarkable impact on the integrity of the silk fibroin chains, as confirmed by gel electrophoresis, which can be correlated with particle mean size and size distribution changes. The smallest nanoparticles (156 ± 3 nm) and the most negative Z potential (-30.2 ± 1.8 mV) were obtained with the combination of long treatment (2 h) of boiling in alkaline solution (Na2CO3 0.02 eq/L). The study confirms that parameters of the process, such as composition of the solution and time of the degumming step, must be controlled in order to reach an optimum reproducibility of the nanoparticle production.

14.
Polymers (Basel) ; 11(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247882

RESUMO

Thermoplastic starch (TPS) films are considered one of the most promising alternatives for replacing synthetic polymers in the packaging field due to the starch biodegradability, low cost, and abundant availability. However, starch granule composition, expressed in terms of amylose content and phosphate monoesters, and molecular weight of starch clearly affects some film properties. In this contribution, biodegradable TPS films made from potato, corn, wheat, and rice starch were prepared using the casting technique. The effect of the grain structure of each starch on microstructure, transparency, hydration properties, crystallinity, and mechanical properties of the films, was evaluated. Potato starch films were the most transparent and corn starch films the most opaque. All the films had homogeneous internal structures-highly amorphous and with no pores, both of which point to a good starch gelatinization process. The maximum tensile strength (4.48-8.14 MPa), elongation at break (35.41-100.34%), and Young's modulus (116.42-294.98 MPa) of the TPS films were clearly influenced by the amylose content, molecular weight, and crystallinity of the film. In this respect, wheat and corn starch films, are the most resistant and least stretchable, while rice starch films are the most extensible but least resistant. These findings show that all the studied starches can be considered suitable for manufacturing resistant and flexible films with similar properties to those of synthetic low-density polyethylene (LDPE), by a simple and environmentally-friendly process.

15.
Data Brief ; 19: 134-144, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29892627

RESUMO

This data article is related to the subject of the research article "Extraction of Organic Compounds Involved in the Kinetic Resolution of rac-2-Pentanol from n-Hexane by Imidazolium-based Ionic Liquids: Liquid-Liquid Equilibrium" (Montalbán et al., 2018) [1]. It contains experimental data of density and refractive index of binary and ternary mixtures of imidazolium-based ionic liquids, n-hexane and organic compounds involved in the kinetic resolution of rac-2-pentanol (rac-2-pentanol, vinyl butyrate, rac-2-pentyl butyrate or butyric acid) measured at 303.15 K and 1 atm. These data are presented as calibration curves which help to determine the composition of the ionic liquid-rich phase knowing its density or refractive index.

16.
Nanomaterials (Basel) ; 8(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495296

RESUMO

Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately -45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

17.
Carbohydr Polym ; 161: 63-70, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189247

RESUMO

Chitosan is a biocompatible polysaccharide with positive Z potential which can stabilize negative charged nanoparticles. Silk fibroin nanoparticles and citrate gold nanoparticles, both with negative Z potential, but they form aggregates at physiological ionic strength. In this work, we study the behavior of chitosan in solution when the ionic strength of the medium is increased and how the concentration of chitosan and the proportion of the two components (chitosan and AuNP or SFN) significantly affect the stability and size of the nanocomposites formed. In addition to experimental measurements, molecular modeling were used to gain insight into how chitosan interacts with silk fibroin monomers, and to identify the main energetic interactions involved in the process. The optimum values for obtaining the smallest and most homogeneous stable nanocomposites were obtained and two different ways of organization through which chitosan may exert its stabilizing effect were suggested.


Assuntos
Quitosana/química , Fibroínas/química , Nanopartículas Metálicas/química , Nanopartículas/química , Ouro/química , Nanocompostos/química
18.
Int J Pharm ; 518(1-2): 11-19, 2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28012995

RESUMO

This article describes how silk fibroin nanoparticles (SFNs) are capable of adsorbing and releasing quercetin (Q) and how its integrity is highly preserved, as confirmed by antioxidant activity assays. Q loading onto SFNs was optimized in terms of the Q/SFN ratio (w/w), time of adsorption and solvent mixture. Quercetin-loaded silk fibroin nanoparticles (QSFNs) were characterized using the dynamic light scattering technique to measure the diameter (Z-Average) and Z-potential (ζ). Loaded particles were slightly bigger than the SFNs, while their ζ was less negative. The antioxidant activity against DPPH showed that the Q loaded in QSFNs not only retains the antioxidant activity but also has a synergistic scavenging activity due the intrinsic antioxidant activity of the SF. The drug loading content (DLC) and the encapsulation efficiency (EE) varied with the relation between Q and SFN in the loading solution. The sustained release of Q occurred throughout the experiment both in phosphate buffer saline (pH 7.4) and simulated intestinal fluid (pH 6.8). The results point to SFNs as promising candidates for Q loading, transport and gastrointestinal delivery with potential applications in nanomedicine, while retaining their nano-size and their antioxidant properties.


Assuntos
Antioxidantes/química , Sistemas de Liberação de Medicamentos , Fibroínas/química , Nanopartículas/química , Quercetina/química , Adsorção , Compostos de Bifenilo/química , Liberação Controlada de Fármacos , Fibroínas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Picratos/química
19.
Chemosphere ; 155: 405-414, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27139120

RESUMO

One of the most important properties of ionic liquids is their non-volatility, making them potentially "green" alternatives to volatile organic compounds. However, they are widely soluble in water, meaning that they can be released into aquatic ecosystems and so contribute to water pollution. Nevertheless, although the toxicity of ILs has been widely assessed in the literature, the information is still scarce due to the great number of ionic liquids that have been synthesized. The present work reports the toxicity of twenty-nine imidazolium-, pyridinium- and ammonium-based ionic liquids towards the bioluminescent photobacterium Vibrio fischeri. When the effect of the type of anion, the length of the alkyl chain of the cation, the cation core and the presence of a functionalized side chain in the cation on ionic liquid toxicity were analyzed, the main influence was seen to be exercised by the alkyl chain length. A Quantitative Structure-Activity Relationships-based method was used to compare the experimental results with previously estimated values and very good agreement was obtained. A relationship between the toxicity, expressed as Log EC50, and the 1-octanol-water partition coefficient was established.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Líquidos Iônicos/toxicidade , Poluentes Químicos da Água/toxicidade , 1-Octanol/análise , Aliivibrio fischeri/crescimento & desenvolvimento , Ânions , Cátions , Líquidos Iônicos/química , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...