Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 189: 206-213, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34419547

RESUMO

The design of new strategies to increase the effectiveness of the antibacterial treatments is a main goal in public health. So, the aim of the study was to achieve a local antibacterial directed therapy as novel alternative allowing both, the delivery of the drug at the target, while minimizing undesirable side effects, thus anticipating an enhanced effectiveness. Hence, we have developed an innovative nanoformulation composed by biomimetic magnetic nanoparticles functionalized with the antimicrobial peptide AS-48 and its potential against Gram-positive and Gram-negative bacteria, either by itself or combined with magnetic hyperthermia has been investigated. Besides, the physical properties, binding efficiency, stability and mechanism of action of this nanoassembly are analyzed. Remarkably, the nanoassembly has a strong bactericidal effect on Gram-positive bacteria, but surprisingly also on E. coli and, finally, when combined with magnetic hyperthermia, on P. aeruginosa and K. pneumoniae. The results obtained represent a breakthrough since it allows a local treatment of infections, reducing and concentrating the dose of antimicrobial compounds, avoiding secondary effects, including the resistance generation and particularly because the combination with magnetic hyperthermia helps sensitizing resistant bacteria to the bactericidal effect of AS-48. Thus, this new formulation should be considered a promising tool in the antibacterial fight.


Assuntos
Antibacterianos/farmacologia , Biomimética , Hipertermia Induzida , Proteínas Imobilizadas/farmacologia , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cinética , Nanopartículas de Magnetita/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula
2.
Appl Microbiol Biotechnol ; 99(12): 5109-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25874532

RESUMO

Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10-60 µg/mL resulted in the production of larger and more well-developed magnetite crystals (~30-40 nm) compared to those of the control (~20-30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Óxido Ferroso-Férrico/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Óxido Ferroso-Férrico/química , Magnetossomos/química , Magnetossomos/genética , Magnetossomos/metabolismo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA