Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2758-2764, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407023

RESUMO

Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.

2.
Chem Commun (Camb) ; 59(24): 3554-3557, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36880408

RESUMO

The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm).

3.
ACS Nano ; 17(7): 6638-6648, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939330

RESUMO

The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.

4.
Nano Lett ; 23(2): 667-676, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36607192

RESUMO

Despite broad interest in colloidal lead halide perovskite nanocrystals (LHP NCs), their intrinsic fast growth has prevented controlled synthesis of small, monodisperse crystals and insights into the reaction mechanism. Recently, a much slower synthesis of LHP NCs with extreme size control has been reported, based on diluted TOPO/PbBr2 precursors and a diisooctylphosphinate capping ligand. We report new insights into the nucleation, growth, and self-assembly in this reaction, obtained by in situ synchrotron-based small-angle X-ray scattering and optical absorption spectroscopy. We show that dispersed 3 nm Cs[PbBr3] agglomerates are the key intermediate species: first, they slowly nucleate into crystals, and then they release Cs[PbBr3] monomers for further growth of the crystals. We show the merits of a low Cs[PbBr3] monomer concentration for the reaction based on oleate ligands. We also examine the spontaneous superlattice formation mechanism occurring when the growing nanocrystals in the solvent reach a critical size of 11.6 nm.

5.
Science ; 377(6613): 1406-1412, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36074820

RESUMO

Colloidal lead halide perovskite nanocrystals are of interest as photoluminescent quantum dots (QDs) whose properties depend on the size and shape. They are normally synthesized on subsecond time scales through hard-to-control ionic metathesis reactions. We report a room-temperature synthesis of monodisperse, isolable, spheroidal APbBr3 QDs ("A" indicates cesium, formamidinium, and methylammonium) that are size tunable from 3 to >13 nanometers. The kinetics of both nucleation and growth are temporally separated and substantially slowed down by the intricate equilibrium between the precursor (PbBr2) and the A[PbBr3] solute, with the latter serving as a monomer. QDs of all these compositions exhibit up to four excitonic transitions in their linear absorption spectra, and we demonstrate that the size-dependent confinement energy for all transitions is independent of the A-site cation.

6.
J Am Chem Soc ; 144(18): 8096-8105, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482030

RESUMO

The growth of two-dimensional platelets of the CdX family (X = S, Se, or Te) in an organic solvent requires the presence of both long- and short-chain ligands. This results in nanoplatelets of atomically precise thickness and long-chain ligand-stabilized Cd top and bottom surfaces. The platelets show a bright and spectrally pure luminescence. Despite the enormous interest in CdX platelets for optoelectronics, the growth mechanism is not fully understood. Riedinger et al. studied the reaction without a solvent and showed the favorable role for short-chain carboxylates for growth in two dimensions. Their model, based on the total energy of island nucleation, shows favored side facet growth versus growth on the top and bottom surfaces. However, several aspects of the synthesis under realistic conditions are not yet understood: Why are both short- and long-chain ligands required to obtain platelets? Why does the synthesis result in both isotropic nanocrystals and platelets? At which stage of the reaction is there bifurcation between isotropic and 2D growth? Here, we report an in situ study of the CdSe nanoplatelet reaction under practical synthesis conditions. We show that without short-chain ligands, both isotropic and mini-nanoplatelets form in the early stage of the process. However, most remaining precursors are consumed in isotropic growth. Addition of acetate induces a dramatic shift toward nearly exclusive 2D growth of already existing mini-nanoplatelets. Hence, although myristate stabilizes mini-nanoplatelets, mature nanoplatelets only grow by a subtle interplay between myristate and acetate, the latter catalyzes fast lateral growth of the side facets of the mini-nanoplatelets.


Assuntos
Compostos de Cádmio , Compostos de Selênio , Acetatos , Compostos de Cádmio/química , Ligantes , Miristatos , Ácido Mirístico , Compostos de Selênio/química , Solventes , Análise Espectral , Raios X
7.
ACS Nano ; 16(5): 7210-7232, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35385663

RESUMO

Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr3 NCs (and FAPbBr3 NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr3 nanocubes combined with Fe3O4 or NaGdF4 spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB2, quasi-ternary ABO3, and ABO6 types as well as previously known NaCl, AlB2, and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF4 nanodisks results in the orthorhombic SL resembling CaC2 structure with pairs of CsPbBr3 NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid-air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.

8.
ACS Nano ; 16(4): 5085-5102, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35325541

RESUMO

The broad deployment of nanotechnology and nanomaterials in modern society is increasing day by day to the point that some have seen in this process the transition from the Silicon Age to a new Nano Age. Nanocrystals─a distinct class of nanomaterials─are forecast to play a pivotal role in the next generation of devices such as liquid crystal displays, light-emitting diodes, lasers, and luminescent solar concentrators. However, it is not to be forgotten that this cutting-edge technology is rooted in empirical knowledge and craftsmanship developed over the millennia. This review aims to span the major applications in which nanocrystals were consistently employed by our forebears. Through an analysis of these examples, we show that the modern-age discoveries stem from multimillennial experience passed on from our proto-chemist ancestors to us.

9.
ACS Energy Lett ; 6(12): 4365-4373, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34917771

RESUMO

Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering. While lead halide perovskite (LHP) FAPbBr3 NCs emitting brightly showed poor spatial resolution due to reabsorption, the Mn2+-doped CsPb(BrCl)3 NCs with oleyl ligands had higher resolution because of large apparent Stokes shift but insufficient concentration for high light yield. In this work, we demonstrate a NC scintillator that features simultaneously high quantum yields, high concentrations, and a large apparent Stokes shift. In particular, we use long-chain zwitterionic ligand capping in the synthesis of Mn2+-doped CsPb(BrCl)3 NCs that allows for attaining very high concentrations (>100 mg/mL) of colloids. The emissive behavior of these ASC18-capped NCs was carefully controlled by compositional tuning that permitted us to select for high quantum yields (>50%) coinciding with Mn-dominated emission for minimal self-absorption. These tailored Mn2+:CsPb(BrCl)3 NCs demonstrated over 8 times brighter light yield than their oleyl-capped variants under fast neutron irradiation, which is competitive with that of near-unity FAPbBr3 NCs, while essentially eliminating self-absorption. Because of their rare combination of concentrations above 100 mg/mL and high quantum yields, along with minimal self-absorption for good spatial resolution, Mn2+:CsPb(BrCl)3 NCs have the potential to displace ZnS:Cu as the leading scintillator for fast neutron imaging.

10.
Nano Lett ; 21(21): 9085-9092, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672607

RESUMO

Quantum-confined nanostructures of CsPbBr3 with luminescence quantum efficiencies approaching unity have shown tremendous potential for lighting and quantum light applications. In contrast to CsPbBr3 quantum dots, where the fine structure of the emissive exciton state has been intensely discussed, the relationship among lattice orientation, shape anisotropy, and exciton fine structure in lead halide nanoplatelets has not yet been established. In this work, we investigate the fine structure of the bright triplet exciton of individual CsPbBr3 nanoplatelets by polarization-resolved micro- and magnetophotoluminescence spectroscopy at liquid helium temperature and find a large zero-field splitting of up to 2.5 meV. A unique relation between the crystal structure and the photoluminescence emission confirms the existence of two distinct crystal configurations in such nanoplatelets with different alignments of the crystal axes with respect to the nanoplatelet facets. Polarization-resolved experiments eventually allow us to determine the absolute orientation of an individual nanoplatelet on the substrate purely by optical means.

11.
Nat Commun ; 12(1): 5844, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615880

RESUMO

The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism. Here, we use multiphonon Raman scattering and THz time-domain spectroscopy to investigate Fröhlich coupling in CsPbBr3. We identify a longitudinal optical phonon mode that dominates the interaction, and surmise that this mode effectively defines exciton-phonon scattering in CsPbBr3, and possibly similar materials. It is additionally revealed that the observed strength of the Fröhlich interaction is significantly higher than the expected intrinsic value for CsPbBr3, and is likely enhanced by carrier localization in the colloidal perovskite nanocrystals. Our experiments also unearthed a dipole-related dielectric relaxation mechanism which may impact transport properties.

12.
Nano Lett ; 21(6): 2487-2496, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33661650

RESUMO

Hot-injection synthesis is renowned for producing semiconductor nanocolloids with superb size dispersions. Burst nucleation and diffusion-controlled size focusing during growth have been invoked to rationalize this characteristic yet experimental evidence supporting the pertinence of these concepts is scant. By monitoring a CdSe synthesis in-situ with X-ray scattering, we find that nucleation is an extended event that coincides with growth during 15-20% of the reaction time. Moreover, we show that size focusing outpaces predictions of diffusion-limited growth. This observation indicates that nanocrystal growth is dictated by the surface reactivity, which drops sharply for larger nanocrystals. Kinetic reaction simulations confirm that this so-called superfocusing can lengthen the nucleation period and promote size focusing. The finding that narrow size dispersions can emerge from the counteracting effects of extended nucleation and reaction-limited size focusing ushers in an evidence-based perspective that turns hot injection into a rational scheme to produce monodisperse semiconductor nanocolloids.

13.
ACS Nano ; 14(11): 14686-14697, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32897688

RESUMO

Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr3 NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at ∼2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr3 light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr3 is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.

14.
Commun Chem ; 3(1): 28, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703462

RESUMO

The adsorption, self-organization and oriented attachment of PbSe nanocrystals (NCs) at liquid-air interfaces has led to remarkable nanocrystal superlattices with atomic order and a superimposed nanoscale geometry. Earlier studies examined the NC self-organization at the suspension/air interface with time-resolved in-situ X-ray scattering. Upon continuous evaporation of the solvent, the NC interfacial layer will finally contact the (ethylene glycol) liquid substrate on which the suspension was casted. In order to obtain structural information on the NC organization at this stage of the process, we examined the ethylene glycol/NC interface in detail for PbSe NCs of different sizes, combining in-situ grazing-incidence small-and-wide-angle X-ray scattering (GISAXS/GIWAXS), X-ray reflectivity (XRR) and analytical calculations of the adsorption geometry of these NCs. Here, we observe in-situ three characteristic adsorption geometries varying with the NC size. Based on the experimental evidence and simulations, we reveal fully three-dimensional arrangements of PbSe nanocrystals at the ethylene glycol-air interface with and without the presence of rest amounts of toluene.

15.
ACS Nano ; 12(12): 12788-12794, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30540430

RESUMO

One of the most attractive commercial applications of semiconductor nanocrystals (NCs) is their use in lasers. Thanks to their high quantum yield, tunable optical properties, photostability, and wet-chemical processability, NCs have arisen as promising gain materials. Most of these applications, however, rely on incorporation of NCs in lasing cavities separately produced using sophisticated fabrication methods and often difficult to manipulate. Here, we present whispering gallery mode lasing in supraparticles (SPs) of self-assembled NCs. The SPs composed of NCs act as both lasing medium and cavity. Moreover, the synthesis of the SPs, based on an in-flow microfluidic device, allows precise control of the dimensions of the SPs, i.e. the size of the cavity, in the micrometer range with polydispersity as low as several percent. The SPs presented here show whispering gallery mode resonances with quality factors up to 320. Whispering gallery mode lasing is evidenced by a clear threshold behavior, coherent emission, and emission lifetime shortening due to the stimulation process.

16.
Nano Lett ; 18(9): 5867-5874, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095918

RESUMO

The dynamics of photoluminescence (PL) from nanocrystal quantum dots (QDs) is significantly affected by the reversible trapping of photoexcited charge carriers. This process occurs after up to 50% of the absorption events, depending on the type of QD considered, and can extend the time between the photoexcitation and relaxation of the QD by orders of magnitude. Although many optoelectronic applications require QDs assembled into a QD solid, until now, reversible trapping has been studied only in (ensembles of) spatially separated QDs. Here, we study the influence of reversible trapping on the excited-state dynamics of CdSe/CdS core/shell QDs when they are assembled into close-packed "supraparticles". Time- and spectrally resolved photoluminescence (PL) measurements reveal competition among spontaneous emission, reversible charge-carrier trapping, and Förster resonance energy transfer between the QDs. While Förster transfer causes the PL to red-shift over the first 20-50 ns after excitation, reversible trapping stops and even reverses this trend at later times. We can model this behavior with a simple kinetic Monte Carlo simulation by considering that charge-carrier trapping leaves the QDs in a state with zero oscillator strength in which no energy transfer can occur. Our results highlight that reversible trapping significantly affects the energy and charge-carrier dynamics for applications in which QDs are assembled into a QD solid.

17.
Nano Lett ; 18(6): 3675-3681, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29781269

RESUMO

We studied the formation of supraparticles from nanocrystals confined in slowly evaporating oil droplets in an oil-in-water emulsion. The nanocrystals consist of an FeO core, a CoFe2O4 shell, and oleate capping ligands, with an overall diameter of 12.5 nm. We performed in situ small- and wide-angle X-ray scattering experiments during the entire period of solvent evaporation and colloidal crystallization. We observed a slow increase in the volume fraction of nanocrystals inside the oil droplets up to 20%, at which a sudden crystallization occurs. Our computer simulations show that crystallization at such a low volume fraction is only possible if attractive interactions between colloidal nanocrystals are taken into account in the model as well. The spherical supraparticles have a diameter of about 700 nm and consist of a few crystalline face-centered cubic domains. Nanocrystal supraparticles bear importance for magnetic and optoelectronic applications, such as color tunable biolabels, color tunable phosphors in LEDs, and miniaturized lasers.

18.
ACS Nano ; 11(9): 9136-9142, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28787121

RESUMO

Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and fine-tuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.

19.
J Am Chem Soc ; 138(43): 14288-14293, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27741393

RESUMO

Heteronanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) study of CdSe (core)/CdS (giant shell) heteronanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...