Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(19): 12809-12816, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32856895

RESUMO

Low-field proton nuclear magnetic resonance (LF-1H NMR) devices based on permanent magnets are a promising analytical tool to be extensively applied to the process analytical chemistry scenario. To enhance its analytical applicability in samples where the spectral resolution is compromised, multivariate regression methods are required. However, building a robust calibration model, such as partial least squares (PLS) regression, is a laborious task because (1) the number of measurements required during the calibration process is large and (2) the procedure must be repeated when the instrument is changed or after a certain period due to the long-term stability of the instrument. Thus, the present work describes the application of calibration transfer methodologies (direct standardization (DS), piece-wise direct standardization (PDS), and double-window piece-wise direct standardization (DWPDS)) on LF-1H NMR to exempt the necessity of a recalibration procedure when moving from the original spectrometer to a second one with the same, lower, or higher magnetic field. These calibration transfer methodologies were tested with PLS models built on a 60 MHz (for the proton Larmor frequency) spectrometer to predict the specific gravity (SG), distillation temperature (T50%), and final boiling point (FBP) of commercial gasoline. The results showed that the DWPDS method applying only 2 to 7 transference samples enables the transference of all PLS models built on the primary instrument (60 MHz) to other (43, 60, and 80 MHz) different instruments, reaching the same RMSEP values as the primary instrument: 1.2 kg/m3 for SG, 5.1 °C for FBP, and 1.1 °C for T50%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...