Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(5): 721-726, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486206

RESUMO

CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.


Assuntos
Complexo Repressor Polycomb 1 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Biochem Eng J ; 186: 108537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35874089

RESUMO

Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA). A receiver operator characteristic (ROC) analysis allowed optimizing the cut-off and confirmed the high accuracy of the test: 98.6% specificity and 95% sensitivity for 11+ days after symptoms onset. We further showed that dried blood spots collected by finger pricking on simple test strips could replace conventional plasma/serum samples. A cost estimate was performed and revealed a final retail price in the range of one US dollar, reflecting the low cost of the ELISA test platform and the elimination of the need for venous blood sampling and refrigerated sample handling in clinical laboratories. The presented workflow can be completed in 4 months from first antigen expression to final test validation. It can be applied to other pathogens and in future pandemics, facilitating reliable and affordable seroepidemiological surveillance also in remote areas and in low-income countries.

3.
iScience ; 24(11): 103315, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34723156

RESUMO

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

4.
Front Med (Lausanne) ; 8: 630982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585529

RESUMO

Background: Convalescent plasma is a potential therapeutic option for critically ill patients with coronavirus disease 19 (COVID-19), yet its efficacy remains to be determined. The aim was to investigate the effects of convalescent plasma (CP) in critically ill patients with COVID-19. Methods: This was a single-center prospective observational study conducted in Rio de Janeiro, Brazil, from March 17th to May 30th, with final follow-up on June 30th. We included 113 laboratory-confirmed COVID-19 patients with respiratory failure. Primary outcomes were time to clinical improvement and survival within 28 days. Secondary outcomes included behavior of biomarkers and viral loads. Kaplan-Meier analyses and Cox proportional-hazards regression using propensity score with inverse-probability weighing were performed. Results: 41 patients received CP and 72 received standard of care (SOC). Median age was 61 years (IQR 48-68), disease duration was 10 days (IQR 6-13), and 86% were mechanically ventilated. At least 29 out of 41CP-recipients had baseline IgG titers ≥ 1:1,080. Clinical improvement within 28 days occurred in 19 (46%) CP-treated patients, as compared to 23 (32%) in the SOC group [adjusted hazard ratio (aHR) 0.91 (0.49-1.69)]. There was no significant change in 28-day mortality (CP 49% vs. SOC 56%; aHR 0.90 [0.52-1.57]). Biomarker assessment revealed reduced inflammatory activity and increased lymphocyte count after CP. Conclusions: In this study, CP was not associated with clinical improvement or increase in 28-day survival. However, our study may have been underpowered and included patients with high IgG titers and life-threatening disease. Clinical Trial Registration: The study protocol was retrospectively registered at the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-4vm3yy (http://www.ensaiosclinicos.gov.br).

6.
PLoS Negl Trop Dis ; 13(1): e0007072, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699122

RESUMO

Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , RNA Viral/efeitos dos fármacos , Sofosbuvir/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , RNA Viral/sangue , RNA Viral/genética , Células Vero , Febre Amarela/sangue , Febre Amarela/patologia , Febre Amarela/virologia , Vírus da Febre Amarela/genética
7.
Viruses ; 8(12)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916837

RESUMO

Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.


Assuntos
Antivirais/farmacologia , Cloroquina/farmacologia , Endocitose/efeitos dos fármacos , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA