Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 52, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060935

RESUMO

BACKGROUND: Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances. RESULTS: The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions. CONCLUSIONS: Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.

2.
Front Microbiol ; 12: 783767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173689

RESUMO

The space-for-time substitution approach provides a valuable empirical assessment to infer temporal effects of disturbance from spatial gradients. Applied to predict the response of different ecosystems under current climate change scenarios, it remains poorly tested in microbial ecology studies, partly due to the trophic complexity of the ecosystems typically studied. The McMurdo Dry Valleys (MDV) of Antarctica represent a trophically simple polar desert projected to experience drastic changes in water availability under current climate change scenarios. We used this ideal model system to develop and validate a microbial space-for-time sampling approach, using the variation of geochemical profiles that follow alterations in water availability and reflect past changes in the system. Our framework measured soil electrical conductivity, pH, and water activity in situ to geochemically define 17 space-for-time transects from the shores of four dynamic and two static Dry Valley lakes. We identified microbial taxa that are consistently responsive to changes in wetness in the soils and reliably associated with long-term dry or wet edaphic conditions. Comparisons between transects defined at static (open-basin) and dynamic (closed-basin) lakes highlighted the capacity for geochemically defined space-for-time gradients to identify lasting deterministic impacts of historical changes in water presence on the structure and diversity of extant microbial communities. We highlight the potential for geochemically defined space-for-time transects to resolve legacy impacts of environmental change when used in conjunction with static and dynamic scenarios, and to inform future environmental scenarios through changes in the microbial community structure, composition, and diversity.

3.
Chemosphere ; 199: 54-67, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29428516

RESUMO

This study investigates the potential of an indigenous estuarine microbial consortium to degrade two polycyclic aromatic hydrocarbons (PAHs), naphthalene and fluoranthene, under nitrate-reducing conditions. Two physicochemically diverse sediment samples from the Lima Estuary (Portugal) were spiked individually with 25 mg L-1 of each PAH in laboratory designed microcosms. Sediments without PAHs and autoclaved sediments spiked with PAHs were run in parallel. Destructive sampling at the beginning and after 3, 6, 12, 30 and 63 weeks incubation was performed. Naphthalene and fluoranthene levels decreased over time with distinct degradation dynamics varying with sediment type. Next-generation sequencing (NGS) of 16 S rRNA gene amplicons revealed that the sediment type and incubation time were the main drivers influencing the microbial community structure rather than the impact of PAH amendments. Predicted microbial functional analyses revealed clear shifts and interrelationships between genes involved in anaerobic and aerobic degradation of PAHs and in the dissimilatory nitrate-reducing pathways (denitrification and dissimilatory nitrate reduction to ammonium - DNRA). These findings reinforced by clear biogeochemical denitrification signals (NO3- consumption, and NH4+ increased during the incubation period), suggest that naphthalene and fluoranthene degradation may be coupled with denitrification and DNRA metabolism. The results of this study contribute to the understanding of the dissimilatory nitrate-reducing pathways and help uncover their involvement in degradation of PAHs, which will be crucial for directing remediation strategies of PAH-contaminated anoxic sediments.


Assuntos
Biodegradação Ambiental , Desnitrificação , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos de Amônio , Estuários , Consórcios Microbianos , Nitratos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA