Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(2): 107-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34915491

RESUMO

Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.


Assuntos
Secreções Corporais , Exocitose , Exocitose/fisiologia , Diagnóstico por Imagem
2.
Adv Biol Regul ; 79: 100772, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288473

RESUMO

Lipids have emerged as important actors in an ever-growing number of key functions in cell biology over the last few years. Among them, glycerophospholipids are major constituents of cellular membranes. Because of their amphiphilic nature, phospholipids form lipid bilayers that are particularly useful to isolate cellular content from the extracellular medium, but also to define intracellular compartments. Interestingly, phospholipids come in different flavors based on their fatty acyl chain composition. Indeed, lipidomic analyses have revealed the presence in cellular membranes of up to 50 different species of an individual class of phospholipid, opening the possibility of multiple functions for a single class of phospholipid. In this review we will focus on phosphatidic acid (PA), the simplest phospholipid, that plays both structural and signaling functions. Among the numerous roles that have been attributed to PA, a key regulatory role in secretion has been proposed in different cell models. We review here the evidences that support the idea that mono- and poly-unsaturated PA control distinct steps in hormone secretion from neuroendocrine cells.


Assuntos
Exocitose , Células Neuroendócrinas/metabolismo , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Transdução de Sinais
3.
Cell Rep ; 32(7): 108026, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814056

RESUMO

Specific forms of fatty acids are well known to have beneficial health effects, but their precise mechanism of action remains elusive. Phosphatidic acid (PA) produced by phospholipase D1 (PLD1) regulates the sequential stages underlying secretory granule exocytosis in neuroendocrine chromaffin cells, as revealed by pharmacological approaches and genetic mouse models. Lipidomic analysis shows that secretory granule and plasma membranes display distinct and specific composition in PA. Secretagogue-evoked stimulation triggers the selective production of several PA species at the plasma membrane near the sites of active exocytosis. Rescue experiments in cells depleted of PLD1 activity reveal that mono-unsaturated PA restores the number of exocytotic events, possibly by contributing to granule docking, whereas poly-unsaturated PA regulates fusion pore stability and expansion. Altogether, this work provides insight into the roles that subspecies of the same phospholipid may play based on their fatty acyl chain composition.


Assuntos
Exocitose/genética , Células Neuroendócrinas/metabolismo , Ácidos Fosfatídicos/metabolismo , Animais , Humanos , Camundongos
4.
FASEB J ; 34(5): 6769-6790, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227388

RESUMO

Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA-binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD-generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding.


Assuntos
Cromogranina A/metabolismo , Complexo de Golgi/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/fisiologia , Vesículas Secretórias/fisiologia , Animais , Células COS , Chlorocebus aethiops , Camundongos , Camundongos Knockout
5.
J Neurosci Methods ; 335: 108596, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035089

RESUMO

BACKGROUND: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step for the biosynthesis of the catecholamines dopamine, noradrenaline and adrenaline. Although its distribution in different organs, species and stages of development has been the subject of numerous studies, the recent emergence of 3D imaging techniques has created the potential to shed new light on the dynamics of TH expression during the development of the mammalian central and peripheral nervous systems. NEW METHOD: Here, we describe a flowchart summarizing different protocols adapted to developmental stage-specific tissues to generate a 3D atlas of the catecholaminergic system in the brain and peripheral nervous system in mice from embryonic to pre-weaning stages. The procedures described allowed a quantitative assessment of developing TH-positive neuronal populations and pathways, previously understudied due to dimensional limitations. RESULTS: Our approach allowed us to reveal in 3D the dynamics of the onset and the establishment of the catecholaminergic system in embryonic and developing central and peripheral nervous system. Quantitative analyses applied to 3D images yielded accurate measurements of neuron population volumes and numbers, and tract pathway dimensions for selected TH-positive brain structures. COMPARISON WITH EXISTING METHODS: We applied a set of different protocols to yield a comprehensive flowchart for 3D imaging and a precise quantitative assessment of specific neuronal populations during the course of their development up to adulthood in mice. CONCLUSION: The procedures described and the extensive 3D mapping of TH immunoreactivity at early embryonic and postnatal stages provide a comprehensive view of the onset and development of the catecholaminergic system in the mouse brain and sympathoadrenal nervous system.


Assuntos
Encéfalo , Tirosina 3-Mono-Oxigenase , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Catecolaminas , Feminino , Camundongos , Gravidez , Design de Software , Tirosina 3-Mono-Oxigenase/metabolismo , Desmame
6.
IUBMB Life ; 72(4): 524-532, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891241

RESUMO

Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.


Assuntos
Cromogranina A/fisiologia , Doenças do Sistema Nervoso/metabolismo , Sistemas Neurossecretores/metabolismo , Animais , Cálcio/metabolismo , Hormônios/metabolismo , Humanos , Vesículas Secretórias/metabolismo
7.
Exp Dermatol ; 28(8): 922-932, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30659649

RESUMO

It is well recognized that the world population is ageing rapidly. Therefore, it is important to understand ageing processes at the cellular and molecular levels to predict the onset of age-related diseases and prevent them. Recent research has focused on the identification of ageing biomarkers, including those associated with the properties of the Golgi apparatus. In this context, Golgi-mediated glycosylation of proteins has been well characterized. Additionally, other studies show that the secretion of many compounds, including pro-inflammatory cytokines and extracellular matrix-degrading enzymes, is modified during ageing, resulting in physical and functional skin degradation. Since the Golgi apparatus is a central organelle of the secretory pathway, we investigated its structural organization in senescent primary human dermal fibroblasts using confocal and electron microscopy. In addition, we monitored the expression of Golgi-related genes in the same cells. Our data showed a marked alteration in the Golgi morphology during replicative senescence. In contrast to its small and compact structure in non-senescent cells, the Golgi apparatus exhibited a large and expanded morphology in senescent fibroblasts. Our data also demonstrated that the expression of many genes related to Golgi structural integrity and function was significantly modified in senescent cells, suggesting a relationship between Golgi apparatus function and ageing.


Assuntos
Senescência Celular , Fibroblastos/metabolismo , Complexo de Golgi/ultraestrutura , Adulto , Complexo de Golgi/metabolismo , Humanos , Cultura Primária de Células
8.
Sci Rep ; 7(1): 5172, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701771

RESUMO

Hormone secretion relies on secretory granules which store hormones in endocrine cells and release them upon cell stimulation. The molecular events leading to hormone sorting and secretory granule formation at the level of the TGN are still elusive. Our proteomic analysis of purified whole secretory granules or secretory granule membranes uncovered their association with the actomyosin components myosin 1b, actin and the actin nucleation complex Arp2/3. We found that myosin 1b controls the formation of secretory granules and the associated regulated secretion in both neuroendocrine cells and chromogranin A-expressing COS7 cells used as a simplified model of induced secretion. We show that F-actin is also involved in secretory granule biogenesis and that myosin 1b cooperates with Arp2/3 to recruit F-actin to the Golgi region where secretory granules bud. These results provide the first evidence that components of the actomyosin complex promote the biogenesis of secretory granules and thereby regulate hormone sorting and secretion.


Assuntos
Actinas/genética , Miosina Tipo I/genética , Vesículas Secretórias/metabolismo , Actinas/metabolismo , Animais , Transporte Biológico , Células COS , Proteínas de Transporte , Chlorocebus aethiops , Complexo de Golgi/metabolismo , Camundongos , Miosina Tipo I/metabolismo , Células Neuroendócrinas/metabolismo , Sistemas Neurossecretores/metabolismo , Células PC12 , Ligação Proteica , Ratos
9.
J Neurochem ; 137(6): 904-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26877188

RESUMO

The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane-bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps. In this review, we highlight evidence supporting the notion that lipids play important functions in secretory vesicle biogenesis, maturation, recruitment, and membrane fusion steps. These effects include regulating various protein distribution and activity, but also directly modulating membrane topology. The challenges ahead to understand the pleiotropic functions of lipids in a secretory granule's journey are also discussed. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).


Assuntos
Grânulos Citoplasmáticos/fisiologia , Lipídeos/fisiologia , Fusão de Membrana/fisiologia , Vesículas Secretórias/fisiologia , Animais , Transporte Biológico/fisiologia , Cálcio/metabolismo , Exocitose/fisiologia , Humanos
10.
Eur J Cancer ; 50(17): 3039-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25307750

RESUMO

AIM: In prostate cancer (PCa), neuroendocrine differentiation (NED) is commonly observed in relapsing, hormone therapy-resistant tumours after androgen deprivation. However, the molecular mechanisms involved in the NED of PCa cells remain poorly understood. In this study, we investigated the expression of the neuroendocrine secretory protein secretogranin II (SgII) in PCa, and its potential involvement in the progression of this cancer as a granulogenic factor promoting NED. METHODS: We have examined SgII immunoreactivity in 25 benign prostate hyperplasia and 32 PCa biopsies. In vitro experiments were performed to investigate the involvement of SgII in the neuroendocrine differentiation and the proliferation of PCa cell lines. RESULTS: We showed that immunoreactive SgII intensity correlates with tumour grade in PCa patients. Using the androgen-dependent lymph node cancer prostate cells (LNCaP) cells, we found that NED triggered by androgen deprivation is associated with the induction of SgII expression. In addition, forced expression of SgII in LNCaP cells implemented a regulated secretory pathway by triggering the formation of secretory granule-like structures competent for hormone storage and regulated release. Finally, we found that SgII promotes prostate cancer (CaP) cell proliferation. CONCLUSION: The present data show that SgII is highly expressed in advanced PCa and may contribute to the neuroendocrine differentiation by promoting the formation of secretory granules and the proliferation of PCa cells.


Assuntos
Neoplasias da Próstata/metabolismo , Secretogranina II/metabolismo , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Meios de Cultura/farmacologia , Progressão da Doença , Humanos , Masculino , Neuropeptídeo Y/farmacologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Esteroides/farmacologia
11.
PLoS One ; 9(2): e88698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523932

RESUMO

Granins and their derived peptides are valuable circulating biological markers of neuroendocrine tumors. The aim of the present study was to investigate the tumoral chromogranin A (CgA)-derived peptide WE-14 and the potential advantage to combine plasma WE-14 detection with the EM66 assay and the existing current CgA assay for the diagnosis of pheochromocytoma. Compared to healthy volunteers, plasma WE-14 levels were 5.4-fold higher in patients with pheochromocytoma, but returned to normal values after surgical resection of the tumor. Determination of plasma CgA and EM66 concentrations in the same group of patients revealed that the test assays for these markers had an overall 84% diagnostic sensitivity, which is identical to that determined for WE-14. However, we found that WE-14 measurement improved the diagnostic sensitivity when combined with the results of CgA or EM66 assays. By combining the results of the three assays, the sensitivity for the diagnosis of pheochromocytoma was increased to 95%. In fact, the combination of WE-14 with either CgA or EM66 test assays achieved 100% sensitivity for the diagnosis of paragangliomas and sporadic or malignant pheochromocytomas if taken separately to account for the heterogeneity of the tumor. These data indicate that WE-14 is produced in pheochromocytoma and secreted into the general circulation, and that elevated plasma WE-14 levels are correlated with the occurrence of this chromaffin cell tumor. In addition, in association with other biological markers, such as CgA and/or EM66, WE-14 measurement systematically improves the diagnostic sensitivity for pheochromocytoma. These findings support the notion that granin-processing products may represent complementary tools for the diagnosis of neuroendocrine tumors.


Assuntos
Neoplasias das Glândulas Suprarrenais/sangue , Cromogranina A/sangue , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/sangue , Tumores Neuroendócrinos/sangue , Peptídeos/química , Feocromocitoma/sangue , Adulto , Idoso , Biomarcadores/sangue , Células Cromafins/citologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
12.
PLoS One ; 8(9): e73668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040018

RESUMO

TrkA-mediated NGF signaling in PC12 cells has been shown to be compartimentalized in specialized microdomains of the plasma membrane, the caveolae, which are organized by scaffold proteins including the member of the caveolin family of proteins, caveolin-1. Here, we characterize the intracellular distribution as well as the biochemical and functional properties of the neuroendocrine long coiled-coil protein 2 (NECC2), a novel long coiled-coil protein selectively expressed in neuroendocrine tissues that contains a predicted caveolin-binding domain and displays structural characteristics of a scaffolding factor. NECC2 distributes in caveolae, wherein it colocalizes with the TrkA receptor, and behaves as a caveolae-associated protein in neuroendocrine PC12 cells. In addition, stimulation of PC12 cells with nerve growth factor (NGF) increased the expression and regulated the distribution of NECC2. Interestingly, knockdown as well as overexpression of NECC2 resulted in a reduction of NGF-induced phosphorylation of the TrkA downstream effector extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) but not of Akt. Altogether, our results identify NECC2 as a novel component of caveolae in PC12 cells and support the contribution of this protein in the maintenance of TrkA-mediated NGF signaling.


Assuntos
Cavéolas/metabolismo , Proteínas de Membrana/metabolismo , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Proteínas de Membrana/genética , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Interferência de RNA , Ratos
13.
J Clin Endocrinol Metab ; 98(11): 4346-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001749

RESUMO

CONTEXT: A number of incidentally discovered pheochromocytomas are not associated with hypertension. The characteristics of normotensive incidentally discovered pheochromocytomas (NIPs) are poorly known. OBJECTIVE: The purpose of this work was to assess the clinical, hormonal, histological, and molecular features of NIPs. DESIGN: This was a retrospective cohort recruited from 2001 to 2011 in 2 tertiary care medical departments. PATIENTS AND METHODS: Clinical, biological, and radiological investigations performed in 96 consecutive patients with sporadic unilateral pheochromocytomas were examined; 47 patients had overt pheochromocytomas responsible for hypertension. Among the patients with incidental pheochromocytomas, 28 had hypertension and 21 were normotensive (NIPs). A total of 62 tumors were examined to determine the Pheochromocytoma of the Adrenal Gland Scale Score, and 29 were studied for the expression of 16 genes involved in chromaffin cell function. RESULTS: Tumor size and metaiodobenzylguanidine (MIBG) scintigraphy results were similar for hypertensive pheochromocytomas (HPs) and NIPs. Patients with NIPs displayed reduced summed levels of urinary catecholamines and metanephrines and, more specifically, reduced levels of adrenaline and metadrenaline compared with those of patients with HPs (P < .001). Urinary metanephrines had 98% diagnostic sensitivity in patients with HPs and only 75% in patients with NIPs (P < .01). Tumor diameter positively correlated with the total amount of urinary concentrations of metanephrines in patients with HPs (P < .001) but not in patients with NIPs. NIPs displayed global decreased chromaffin gene expression (reaching significance for 5 of them) and 2 corresponding proteins (phenylethanolamine N-methyltransferase and secretogranin II) and a significant increase in the cellularity, mitotic activity, and presence of atypical mitosis (P < .05). CONCLUSIONS: NIPs differ from pheochromocytomas responsible for hypertension and display features of altered chromaffin differentiation. These tumors may be misdiagnosed with the use of the usual biological diagnostic tools.


Assuntos
Neoplasias das Glândulas Suprarrenais , Células Cromafins/diagnóstico por imagem , Células Cromafins/fisiologia , Regulação Neoplásica da Expressão Gênica , Feocromocitoma , 3-Iodobenzilguanidina , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Células Cromafins/patologia , Feminino , Humanos , Hipertensão/diagnóstico por imagem , Hipertensão/genética , Hipertensão/metabolismo , Achados Incidentais , Masculino , Pessoa de Meia-Idade , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/genética , Feocromocitoma/metabolismo , Cintilografia , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Transcriptoma
14.
Endocrinology ; 153(9): 4444-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22851679

RESUMO

Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca(2+)-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca(2+)-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca(2+)-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca(2+)-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Cromogranina A/farmacologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Actinas/ultraestrutura , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Exocitose/efeitos dos fármacos , Microscopia Eletrônica , Microscopia de Fluorescência , Vesículas Secretórias/ultraestrutura , Espectrometria de Massas em Tandem
15.
Biochem J ; 443(2): 387-96, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22250954

RESUMO

Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Animais , Transporte Biológico , Inativação Gênica , Proteínas de Homeodomínio/genética , Proteínas de Membrana/genética , Células Neuroendócrinas/metabolismo , Células PC12 , Ratos
16.
Cell Mol Neurobiol ; 30(8): 1189-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21046450

RESUMO

Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a "granulogenic protein" that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.


Assuntos
Cromogranina A/metabolismo , Hormônios Peptídicos/metabolismo , Vesículas Secretórias/metabolismo , Animais , Humanos , Modelos Biológicos , Hormônios Peptídicos/química , Estrutura Quaternária de Proteína , Transporte Proteico
17.
Regul Pept ; 165(1): 21-9, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20600356

RESUMO

Pheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases. The diagnosis of pheochromocytomas depends mainly upon the demonstration of catecholamine excess by 24-h urinary catecholamines and metanephrines or plasma metanephrines. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions, which are associated with a poor survival rate. The characterization of tissue, circulating or genetic markers is therefore crucial for the management of these tumors. Proteins of the granin family and their derived peptides are present in dense-core secretory vesicles and secreted into the bloodstream, making them useful markers for the identification of neuroendocrine cells and neoplasms. In this context, we will focus here on reviewing the distribution and characterization of granins and their processing products in normal and tumoral chromaffin cells, and their clinical usefulness for the diagnosis and prognosis of pheochromocytomas. It appears that, except SgIII, all members of the granin family i.e. CgA, CgB, SgII, SgIV-SgVII and proSAAS, and most of their derived peptides are present in adrenomedullary chromaffin cells and in pheochromocytes. Moreover, besides the routinely used CgA test assays, other assays have been developed to measure concentrations of tissue and/or circulating granins or their derived peptides in order to detect the occurrence of pheochromocytomas. In most cases, elevated levels of these entities were found, in correlation with tumor occurrence, while rarely discriminating between benign and malignant neoplasms. Nevertheless, measurement of the levels of granins and derived peptides improves the diagnostic sensitivity and may therefore provide a complementary tool for the management of pheochromocytomas. However, the existing data need to be substantiated in larger groups of patients, particularly in the case of malignant disease.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/patologia , Células Cromafins/metabolismo , Células Cromafins/patologia , Cromograninas/metabolismo , Feocromocitoma/diagnóstico , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/metabolismo , Humanos , Feocromocitoma/metabolismo
18.
J Biol Chem ; 285(13): 10030-10043, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20061385

RESUMO

Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.


Assuntos
Catecolaminas/metabolismo , Secretogranina II/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células COS , Chlorocebus aethiops , Grânulos Cromafim/metabolismo , Inativação Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Células Neuroendócrinas/metabolismo , Células PC12 , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo
19.
J Biol Chem ; 284(18): 12420-31, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19179339

RESUMO

Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.


Assuntos
Proteínas de Anfíbios/biossíntese , Cromogranina A/biossíntese , Peptídeos/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Recombinantes/biossíntese , Vesículas Secretórias/metabolismo , Proteínas de Anfíbios/genética , Animais , Anuros , Células COS , Chlorocebus aethiops , Cromogranina A/genética , Expressão Gênica , Peptídeos/genética , Pró-Opiomelanocortina/biossíntese , Proteínas Recombinantes/genética , Vesículas Secretórias/genética
20.
J Neurochem ; 107(2): 361-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18710417

RESUMO

Urotensin II (UII) and UII-related peptide (URP) are paralog neuropeptides whose existence and distribution in mouse have not yet been investigated. In this study, we showed by HPLC/RIA analysis that the UII-immunoreactive molecule in the mouse brain corresponds to a new UII(17) isoform. Moreover, calcium mobilization assays indicated that UII(17) and URP were equally potent in stimulating UII receptor (UT receptor). Quantitative RT-PCR and in situ hybridization analysis revealed that in the CNS UII and URP mRNAs were predominantly expressed in brainstem and spinal motoneurons. Besides, they were differentially expressed in the medial vestibular nucleus, locus coeruleus and the ventral medulla. In periphery, both mRNAs were expressed in skeletal muscle, testis, vagina, stomach, and gall bladder, whereas only URP mRNA could be detected in the seminal vesicle, heart, colon, and thymus. By contrast, the UT receptor mRNA was widely expressed, and notably, very high amounts of transcript occurred in skeletal muscle and prostate. In the biceps femoris muscle, UII-like immunoreactivity was shown to coexist with synaptophysin in muscle motor end plate regions. Altogether these results suggest that (i) UII and URP may have many redundant biological effects, especially at the neuromuscular junction; (ii) URP may more specifically participate to autonomic, cardiovascular and reproductive functions.


Assuntos
Encéfalo/metabolismo , Junção Neuromuscular/metabolismo , Hormônios Peptídicos/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Urotensinas/metabolismo , Animais , Encéfalo/anatomia & histologia , Células CHO , Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Feminino , Masculino , Camundongos , Radioimunoensaio/métodos , Receptores Acoplados a Proteínas G/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Urotensinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...