Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomed Res Int ; 2024: 2052766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249632

RESUMO

Background: Diabetic retinopathy (DR) risk has been shown to vary depending on ethnic backgrounds, and thus, it is worthy that underrepresented populations are analyzed for the potential identification of DR-associated genetic variants. We conducted a case-control study for the identification of DR-risk variants in Mexican population. Methods: We ascertained 60 type 2 diabetes mellitus (T2DM) patients. Cases (n = 30) were patients with advanced proliferative DR (PDR) with less than 15 years after a T2DM diagnosis while controls (n = 30) were patients with no DR 15 years after the diagnosis of T2DM. Exome sequencing was performed in all patients, and the frequency of rare variants was compared. In addition, the frequency of variants occurring in a set of 169 DR-associated genes were compared. Results: Statistically significant differences were identified for rare missense and splice variants and for rare splice variants occurring more than once in either group. A strong statistical difference was observed when the number of rare missense variants with an aggregated prediction of pathogenicity and occurring more than once in either group was compared (p = 0.0035). Moreover, 8 variants identified more than once in either group, occurring in previously identified DR-associated genes were recognized. The p.Pro234Ser KIR2DS4 variant showed a strong protective effect (OR = 0.04 [0.001-0.36]; p = 0.04). Conclusions: Our study showed an enrichment of rare splice acceptor/donor variants in patients with PDR and identified a potential protective variant in KIR2DS4. Although statistical significance was not reached, our results support the replication of 8 previously identified DR-associated genes.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Sequenciamento do Exoma , Fenótipo
2.
Mol Syndromol ; 14(2): 143-151, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064331

RESUMO

Introduction: PACS1-related neurodevelopmental disorder (PACS1-related NDD) is caused by pathogenic variants in the PACS1 gene and is characterized by a distinctive facial appearance, intellectual disability, speech delay, seizures, feeding difficulties, cryptorchidism, hernias, and structural anomalies of the brain, heart, eye, and kidney. There is a marked facial resemblance and a common multisystem affectation with patients carrying pathogenic variants in the WDR37 and PACS2 genes, although they vary in terms of severity and eye involvement. Case Presentation: Here, we describe 4 individuals with PACS1-related NDD from Mexico, all of them carrying a de novo PACS1 variant c.607C>T; p.(Arg203Trp) identified by exome sequencing. In addition to eye colobomata, this report identified corneal leukoma, cataracts, and tortuosity of retinal vessels as ophthalmic manifestations not previously reported in patients with PACS1-related NDD. Discussion: We reviewed the ocular phenotypes reported in 74 individuals with PACS1-related NDD and the overlaps with WDR37- and PACS2-related syndromes. We found that the 3 syndromes have in common the presence of colobomata, ptosis, nystagmus, strabismus, and refractive errors, whereas microphthalmia, microcornea, and Peters anomaly are found only among individuals with PACS1-related NDD and WDR37 syndrome, being more severe in the latter. This supports the previous statement that the so-called WDR37-PACS1-PACS2 axis might have an important role in ocular development and also that the specific ocular findings could be useful in the clinical differentiation between these related syndromes.

3.
Rev Invest Clin ; 74(4): 219-226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36087940

RESUMO

Background: Genetic eye disorders, affecting around one in 1000 people, encompass a diverse group of diseases causing severe visual deficiency. The recent adoption of next-generation sequencing techniques, including whole-exome sequencing (WES), in medicine has greatly enhanced diagnostic rates of genetically heterogeneous diseases. Objectives: The objectives of the study were to assess the diagnostic yield of WES in a cohort of Mexican individuals with suspected genetic eye disorders and to evaluate the improvement of diagnostic rates by reanalysis of WES data in patients without an initial molecular diagnosis. Methods: A total of 90 probands with ocular anomalies of suspected genetic origin were ascertained. Patients underwent WES in leukocytic DNA. Bioinformatics analysis and Sanger sequencing were used to confirm the disease-causing variants. Only variants identified as pathogenic or likely pathogenic were considered as causal. Results: Initial analysis revealed causal mutations in 46 cases (51%). Reanalysis of WES data 12 months after first analysis resulted in the identification of additional causal variants in 6 patients (7%), increasing the molecular diagnostic yield to 58%. The highest diagnostic rates by disease categories corresponded to hereditary retinal dystrophies (77%) and to anomalies of the anterior segment of the eye (47%). Conclusions: Our study demonstrates that WES is an effective approach for genetic diagnosis of genetic ocular diseases and that reanalysis of WES data can improve the diagnostic yield.


Assuntos
Exoma , Oftalmopatias , Oftalmopatias/diagnóstico , Oftalmopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Sequenciamento do Exoma/métodos
4.
Rev. invest. clín ; 74(4): 219-226, Jul.-Aug. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1409584

RESUMO

ABSTRACT Background: Genetic eye disorders, affecting around one in 1000 people, encompass a diverse group of diseases causing severe visual deficiency. The recent adoption of next-generation sequencing techniques, including whole-exome sequencing (WES), in medicine has greatly enhanced diagnostic rates of genetically heterogeneous diseases. Objectives: The objectives of the study were to assess the diagnostic yield of WES in a cohort of Mexican individuals with suspected genetic eye disorders and to evaluate the improvement of diagnostic rates by reanalysis of WES data in patients without an initial molecular diagnosis. Methods: A total of 90 probands with ocular anomalies of suspected genetic origin were ascertained. Patients underwent WES in leukocytic DNA. Bioinformatics analysis and Sanger sequencing were used to confirm the disease-causing variants. Only variants identified as pathogenic or likely pathogenic were considered as causal. Results: Initial analysis revealed causal mutations in 46 cases (51%). Reanalysis of WES data 12 months after first analysis resulted in the identification of additional causal variants in 6 patients (7%), increasing the molecular diagnostic yield to 58%. The highest diagnostic rates by disease categories corresponded to hereditary retinal dystrophies (77%) and to anomalies of the anterior segment of the eye (47%). Conclusion: Our study demonstrates that WES is an effective approach for genetic diagnosis of genetic ocular diseases and that reanalysis of WES data can improve the diagnostic yield.

5.
Ophthalmic Genet ; 43(5): 589-593, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470743

RESUMO

PURPOSE: The purpose of this study is to describe the corneal clinical spectrum and the intrafamilial phenotypic differences in an extended pedigree suffering from stromal corneal dystrophy due to the rare p.Ala546Asp mutation in TGFBI. METHODS: A total of 15 members from a four-generation Mexican family were ascertained for clinical and genetic assessment. All individuals underwent slit-lamp biomicroscopic examination and an extensive ophthalmological examination including corneal topography (OCULUS Pentacam® AXL), corneal biomechanics (OCULUS Corvis ST), and corneal confocal biomicroscopy (Heidelberg Engineering®). A total of 10 individuals carried the heterozygous c.1637C>A (p. Ala546Asp) mutation at TGFBI exon 12. RESULTS: Nine out of 10 mutation positive patients were available for clinical characterization. The mean age was 35.5 years, with the youngest and the eldest ones being 3 years old and 62 years old, respectively. The median age of onset of the symptoms was 19.7 years. Five (55.6%) patients presented with a predominantly granular corneal dystrophy type 2 (GCD2) phenotype, one presented with a lattice corneal dystrophy (LCD) phenotype, and one with a granular corneal dystrophy type 1 (GCD1) phenotype. Interestingly, two mutation positive subjects had no clinical deposits in the cornea, demonstrating incomplete penetrance of the disorder in this family. CONCLUSIONS: Clinical differences in corneal phenotypes within this CD family and with other pedigrees carrying the same TGFBI genetic defect could be explained by the age of clinical examination of individual patients and/or by the presence of genetic and/or environmental modifiers.


Assuntos
Distrofias Hereditárias da Córnea , Proteínas da Matriz Extracelular , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/genética , Humanos , Mutação , Linhagem , Fenótipo , Fator de Crescimento Transformador beta/genética
6.
Molecules ; 20(6): 11154-72, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26091074

RESUMO

Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD). This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK) levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 and matrix metalloproteinase 2, tissue inhibitor of metalloproteinases 1, myostatin (GDF-8) and follistatin (FSTN) as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05), to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD) and Limb-girdle muscular dystrophy (LGMD) patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05). Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.


Assuntos
Heterozigoto , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Biomarcadores , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas da Matriz Extracelular/sangue , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/diagnóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...