Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 626-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326614

RESUMO

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Assuntos
Evolução Molecular , Imunoterapia Adotiva , Linfoma Cutâneo de Células T , Mutação , Linfócitos T , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Imunoterapia Adotiva/métodos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
2.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910981

RESUMO

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening "on-target/off-tumor" toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


Assuntos
Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva , Mesotelina , Camundongos , Placenta , Gravidez , Receptores de Antígenos de Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Plant Cell Rep ; 39(2): 245-257, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31728703

RESUMO

KEY MESSAGE: A novel and robust lipofection-mediated transfection approach for the use of DNA-free Cas9/gRNA RNP for gene editing has demonstrated efficacy in plant cells. Precise genome editing has been revolutionized by CRISPR/Cas9 systems. DNA-based delivery of CRISPR/Cas9 is widely used in various plant species. However, protein-based delivery of the in vitro translated Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) complex into plant cells is still in its infancy even though protein delivery has several advantages. These advantages include DNA-free delivery, gene-edited host plants that are not transgenic, ease of use, low cost, relative ease to be adapted to high-throughput systems, and low off-target cleavage rates. Here, we show a novel lipofection-mediated transfection approach for protein delivery of the preassembled Cas9/gRNA RNP into plant cells for genome editing. Two lipofection reagents, Lipofectamine 3000 and RNAiMAX, were adapted for successful delivery into plant cells of Cas9/gRNA RNP. A green fluorescent protein (GFP) reporter was fused in-frame with the C-terminus of the Cas9 protein and the fusion protein was successfully delivered into non-transgenic tobacco cv. 'Bright Yellow-2' (BY2) protoplasts. The optimal efficiencies for Lipofectamine 3000- and RNAiMAX-mediated protein delivery were 66% and 48%, respectively. Furthermore, we developed a biolistic method for protein delivery based on the known proteolistics technique. A transgenic tobacco BY2 line expressing an orange fluorescence protein reporter pporRFP was targeted for knockout. We found that the targeted mutagenesis frequency for our Lipofectamine 3000-mediated protein delivery was 6%. Our results showed that the newly developed lipofection-mediated transfection approach is robust for the use of the DNA-free Cas9/gRNA technology for genome editing in plant cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células Vegetais/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Agrobacterium , Biolística/métodos , Linhagem Celular , DNA , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutagênese , Plantas Geneticamente Modificadas , Protoplastos , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...