RESUMO
A copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide in the denitrifier Sinorhizobium meliloti 2011 (SmNirK), a microorganism used as bioinoculant in alfalfa seeds. Wild type SmNirK is a homotrimer that contains two copper centers per monomer, one of type 1 (T1) and other of type 2 (T2). T2 is at the interface of two monomers in a distorted square pyramidal coordination bonded to a water molecule and three histidine side chains, H171 and H136 from one monomer and H342 from the other. We report the molecular, catalytic, and spectroscopic properties of the SmNirK variant H342G, in which the interfacial H342 T2 ligand is substituted for glycine. The molecular properties of H342G are similar to those of wild type SmNirK. Fluorescence-based thermal shift assays and FTIR studies showed that the structural effect of the mutation is only marginal. However, the kinetic reaction with the physiological electron donor was significantly affected, which showed a â¼ 100-fold lower turnover number compared to the wild type enzyme. UV-Vis, EPR and FTIR studies complemented with computational calculations indicated that the drop in enzyme activity are mainly due to the void generated in the protein substrate channel by the point mutation. The main structural changes involve the filling of the void with water molecules, the direct coordination to T2 copper ion of the second sphere aspartic acid ligand, a key residue in catalysis and nitrite sensing in NirK, and to the loss of the 3 N-O coordination of T2.
Assuntos
Cobre , Sinorhizobium meliloti , Cobre/química , Nitritos/química , Sinorhizobium meliloti/química , Sinorhizobium meliloti/metabolismo , Histidina/química , Domínio Catalítico , Oxirredução , Ligantes , Glicina , Espectroscopia de Ressonância de Spin Eletrônica , Nitrito Redutases/químicaRESUMO
MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.
Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação ProteicaRESUMO
Chitinase chi18-5 is an enzyme able to hydrolyze chitin and chitosan producing chitooligosaccharides (COS) of potential technological interest. chi18-5 is produced naturally by the fungus Trichoderma atroviride. It belongs to the glycosyl hydrolase (GH) family 18 of the Carbohydrate Active Enzyme (CAZy) database and it has 83% identity compared to the well-characterized chi42 of Trichoderma harzianum. Several efforts have been made to characterize the biochemical activity of the enzyme and its structure. Here, we studied the biophysical properties of recombinant chi18-5. In order to gain insight into its structure and stability, we studied thermal denaturation by Circular Dichroism (CD), Intrinsic Fluorescence (FL), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR) at several pH between 3 and 8. We observed that the conformation of chi18-5 changes near its pI, and the transitions as a function of the temperature involved an increment in ß-sheet secondary structure at the expenses of âº-helix. We also performed amide hydrogen exchange dynamics in selected conditions. At pH ≤ 6, the proportion of fast exchanging residues are larger than at pH ≥ 6. Our results suggest that at pH below pI, chi18-5 is in a less compact structure which may have influence in the interaction with substrate and enzyme activity. KEY POINTS: ⢠Characterization of enzyme behavior is critical for their wide applications ⢠We produced and characterized biophysically a chitinase as a function of pH ⢠The pH of optimum activity correlates with a less compact structure of chi18-5.
Assuntos
Quitinases , Quitina , Quitinases/genética , Quitinases/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , TemperaturaRESUMO
Interactions between the antibiotic peptide nisin and multilamellar vesicles of phosphoglycerol lipids in different phase-states were studied using vibrational spectroscopy. The infrared amide I' band of nisin, both in solution and in the membrane-bound state, was analyzed in the temperature range comprised between 20 and 60⯰C in order to study its conformational behavior. Nisin presented mainly unordered and ß-turns conformations. Their relative populations varied according to the environment and as the temperature increased: ß turns were more favored in the membrane-bound state than in solution, but at higher temperatures the disordered conformation was dominant in both states. Spectral changes of specific infrared bands belonging to the hydrocarbon and polar moieties of lipids were also analyzed to evaluate the perturbation of the lipid membrane order. Nisin interactions with the membrane polar region induced a high restriction to water incorporation, promoting a small increase in the temperature of the lipid phase transition. Raman spectra of nisin/phosphoglycerol systems at ambient temperature were also analyzed. They revealed that the peptide incorporation to a membrane in the fluid phase caused drastic structural modifications in the hydrophobic region of the bilayer. Although nisin may be able to disrupt the hydrophobic portion of the bilayer in the gel phase, the most of the peptide molecule remained at the membrane surface interacting with the polar headgroups. This work provides evidence of a differential effect of nisin on anionic membranes, depending on the phase-state of the lipid.
Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Nisina/química , Nisina/metabolismo , Análise Espectral Raman/métodos , Ânions , Modelos Biológicos , VibraçãoRESUMO
Calreticulin (CRT) is a calcium-binding protein that participates in several cellular processes including the control of protein folding and homeostasis of Ca2+. Its folding, stability and functions are strongly controlled by the presence of Ca2+. The oligomerization state of CRT is also relevant for its functions. We studied the thermal transitions of monomers and oligomers of CRT by differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) in the presence and absence of Ca2+. We found three and two components for the calorimetric transition in the presence and absence of Ca2+ respectively. The presence of several components was also supported by CD and FTIR spectra acquired as a function of the temperature. The difference between the heat capacity of the native and the unfolded state strongly suggests that interactions between protein domains also contribute to the heat uptake in a calorimetry experiment. We found that once unfolded at high temperature the process is reversible and the native state can be recovered upon cooling only in the absence of Ca2+. We also propose a new simple method to obtain pure CRT oligomers.
Assuntos
Calreticulina/química , Cálcio/química , Varredura Diferencial de Calorimetria , Calreticulina/genética , Dicroísmo Circular , Conformação Proteica , Desdobramento de Proteína , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , TermodinâmicaRESUMO
The fatty acid-binding proteins L-BABP and Rep1-NCXSQ bind to anionic lipid membranes by electrostatic interactions. According to Molecular Dynamics (MD) simulations, the interaction of the protein macrodipole with the membrane electric field is a driving force for protein binding and orientation in the interface. To further explore this hypothesis, we studied the interactions of these proteins with cationic lipid membranes. As in the case of anionic lipid membranes, we found that both proteins, carrying a negative as well as a positive net charge, were bound to the positively charged membrane. Their major axis, those connecting the bottom of the ß-barrel with the α-helix portal domain, were rotated about 180 degrees as compared with their orientations in the anionic lipid membranes. Fourier transform infrared (FTIR) spectroscopy of the proteins showed that the positively charged membranes were also able to induce conformational changes with a reduction of the ß-strand proportion and an increase in α-helix secondary structure. Fatty acid-binding proteins (FABPs) are involved in several cell processes, such as maintaining lipid homeostasis in cells. They transport hydrophobic molecules in aqueous medium and deliver them into lipid membranes. Therefore, the interfacial orientation and conformation, both shown herein to be electrostatically determined, have a strong correlation with the specific mechanism by which each particular FABP exerts its biological function.
Assuntos
Membrana Celular/química , Proteínas de Ligação a Ácido Graxo/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Estrutura Secundária de Proteína , Eletricidade EstáticaRESUMO
We studied the conformational changes of the fatty acid-binding protein ReP1-NCXSQ in the interface of anionic lipid membranes. ReP1-NCXSQ is an acidic protein that regulates the activity of the Na+/Ca2+ exchanger in squid axon. The structure is a flattened barrel composed of two orthogonal ß-sheets delimiting an inner cavity and a domain of two α-helix segments arranged as a hairpin. FTIR and CD spectroscopy showed that the interactions with several anionic lipids in the form of small unilamellar vesicles (SUVs) induced an increase in the proportion of helix secondary structure. Lower amount or no increase in α-helix was observed upon the interaction with anionic lipids in the form of large unilamellar vesicles (LUVs). The exception was 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) that was equally efficien to to induce the conformational change both in SUVs and in LUVs. In solution, the infrared spectra of ReP1-NCXSQ at temperatures above the unfolding displayed a band at 1617 cm-1 characteristic of aggregated strands. This band was not observed when the protein interacted with DMPG, indicating inhibition of aggregation in the interface. Similarly to the observed in L-BABP, another member of the fatty acid binding proteins, a conformational change in ReP1-NCXSQ was coupled to the gel to liquid-crystalline lipid phase transition.
Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Transição de Fase , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Trocador de Sódio e Cálcio/metabolismoRESUMO
Line tension (γ) is a key parameter for the structure and dynamics of membrane domains. It was proposed that hybrid lipids, with mixed saturated and unsaturated acyl chains, participate in the relaxation of γ through different mechanisms. In this work, we used molecular dynamics simulations of the coarse-grained MARTINI model to measure γ in liquid-ordered-liquid-disordered (Lo-Ld) membranes, with increasingly larger relative proportion of the hybrid polyunsaturated lipid PAPC (4:0-5:4PC) to DAPC (di5:4PC) (i.e., XH). We also calculated an elastic contribution to γ by the Lo-Ld thickness mismatch, tilt moduli, and bending moduli, as predicted by theory. We found that an increase in XH decreased the overall γ value and the elastic contribution to line tension. The effect on the elastic line tension is driven by a reduced hydrophobic mismatch. Changes in the elastic constants of the phases due to an increase in XH produced a slightly larger elastic γ term. In addition to this elastic energy, other major contributions to γ are found in these model membranes. Increasing XH decreases both elastic and nonelastic contributions to γ. Finally, PAPC also behaves as a linactant, relaxing γ through an interfacial effect, as predicted by theoretical results. This study gives insight into the actual contribution of distinct energy terms to γ in bilayers containing polyunsaturated hybrid lipids.
Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química , Colesterol/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , TemperaturaRESUMO
In contrast to vertebrate immune systems, invertebrates lack an adaptive response and rely solely on innate immunity in which antimicrobial peptides (AMPs) play an essential role. Most of them are membrane active molecules that are typically unstructured in solution and adopt secondary/tertiary structures upon binding to phospholipid bilayers. This work presents the first characterization of a constitutive AMP from the hemolymph of an Opiliones order animal: the harvestman Acutisoma longipes. This peptide was named longipin. It presents 18 aminoacid residues (SGYLPGKEYVYKYKGKVF) and a positive net charge at neutral pH. No similarity with other AMPs was observed. However, high sequence similarity with heme-lipoproteins from ticks suggested that longipin might be a protein fragment. The synthetic peptide showed enhanced antifungal activity against Candida guilliermondii and C. tropicalis yeasts (MIC: 3.8-7.5 µM) and did not interfered with VERO cells line viability at all concentrations tested (200-0.1 µM). This selectivity against microbial cells is related to the highest affinity of longipin for anionic charged vesicles (POPG:POPC) compared to zwitterionic ones (POPC), once microbial plasma membrane are generally more negatively charged compared to mammalian cells membrane. Dye leakage from carboxyfluorescein-loaded POPG:POPC vesicles suggested that longipin is a membrane active antimicrobial peptide and FT-IR spectroscopy showed that the peptide chain is mainly unstructured in solution or in the presence of POPC vesicles. However, upon binding to POPG:POPC vesicles, the FT-IR spectrum showed bands related to ß-sheet and amyloid-like fibril conformations in agreement with thioflavin-T binding assays, indicating that longipin is an amyloid antimicrobial peptide.
Assuntos
Amiloide , Peptídeos Catiônicos Antimicrobianos , Aracnídeos , Proteínas de Artrópodes , Bactérias/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Amiloide/química , Amiloide/genética , Amiloide/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aracnídeos/química , Aracnídeos/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Chlorocebus aethiops , Células VeroRESUMO
The regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ) is a 15kDa soluble, intracellular protein that regulates the activity of the Na(+)/Ca(2+) exchanger in the squid axon. It is a member of the cellular retinoic acid-binding proteins family and the fatty acid-binding proteins superfamily. It is composed of ten beta strands defining an inner cavity and a domain of two short alpha helix segments. In this work, we studied the binding and orientation of ReP1-NCXSQ in anionic and zwitterionic lipid membranes using molecular dynamics (MD) simulations. Binding to lipid membranes was also measured by filtration binding assay. ReP1-NCXSQ acquired an orientation in the anionic membranes with the positive end of the macrodipole pointing to the lipid membrane. Potential of mean force calculations, in agreement with experimental measurements, showed that the binding to the anionic interfaces in low ionic strength was stronger than the binding to anionic interfaces in high ionic strength or to zwitterionic membranes. The results of MD showed that the electrostatic binding can be mediated not only by defined patches or domains of basic residues but also by a global asymmetric distribution of charges. A combination of dipole-electric field interaction and local interactions determined the orientation of ReP1-NCXSQ in the interface.
Assuntos
Eletricidade , Proteínas de Ligação a Ácido Graxo/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Decapodiformes , Proteínas de Ligação a Ácido Graxo/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Conformação Proteica , Trocador de Sódio e Cálcio/químicaRESUMO
Protein arginylation mediated by arginyl-tRNA protein transferase is a post-translational modification that occurs widely in biology, it has been shown to regulate protein and properties and functions. Post-translational arginylation is critical for embryogenesis, cardiovascular development and angiogenesis but the molecular effects of proteins arginylated in vivo are largely unknown. In the present study, we demonstrate that arginylation reduces CRT (calreticulin) thermostability and induces a greater degree of dimerization and oligomerization. R-CRT (arginylated calreticulin) forms disulfide-bridged dimers that are increased in low Ca(2+) conditions at physiological temperatures, a similar condition to the cellular environment that it required for arginylation of CRT. Moreover, R-CRT self-oligomerizes through non-covalent interactions that are enhanced at temperatures above 40 °C, condition that mimics the heat shock treatment where R-CRT is the only isoespecies of CRT that associates in cells to SGs (stress granules). We show that in cells lacking CRT the scaffolding of larger SGs is impaired; the transfection with CRT (hence R-CRT expression) restores SGs assembly whereas the transfection with CRT mutated in Cys146 does not. Thus, R-CRT disulfide-bridged dimers (through Cys146) are essential for the scaffolding of larger SGs under heat shock, although these dimers are not required for R-CRT association to SGs. The alteration in SGs assembly is critical for the normal cellular recover of cells after heat induced stress. We conclude that R-CRT is emerging as a novel protein that has an impact on the regulation of SGs scaffolding and cell survival.
Assuntos
Arginina/química , Calreticulina/química , Calreticulina/metabolismo , Proteínas de Choque Térmico/metabolismo , Aminoaciltransferases , Animais , Apoptose , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Dimerização , Resposta ao Choque Térmico , Camundongos , Processamento de Proteína Pós-TraducionalRESUMO
We studied the conformation of ß2-human glycoprotein (ß2GPI) in solution and bound to the anionic lipids palmitoyl oleoyl phosphatidylglycerol (POPG), dimiristoyl phosphatidylglycerol (DMPG) and dipalmitoyl phosphatidylglycerol (DPPG) as a function of the temperature. We used the infrared amide I' band to study the protein conformation, and the position of the antisymmetric stretching band of the methylene groups in the lipid hydrocarbon chains to study the lipid order. Lipid-protein complexes were studied in media of low and high ionic strengths. In solution, ß2GPI displayed a conformational pre-transition in the range 47-50°C, characterized by a shift in the band of ß secondary structure, previous to the main unfolding at 64°C. When the protein was bound to the anionic lipid membranes at 25°C, a similar shift as in the pre-transition in solution was observed, together with an increase in the band corresponding to α-helix secondary structure. Lipid-protein complexes formed large aggregates within the temperature range 10â 60°C. At temperatures above the protein unfolding, the complexes were disrupted to yield vesicles with bound protein. This finding indicated that the native fold was required for the formation of the lipid-protein aggregates. Cycles of heating and cooling showed hysteresis in the formation of aggregates.
Assuntos
Glicoproteínas/química , Lipídeos/química , Fosfatidilgliceróis/química , Calorimetria/métodos , Luz , Nefelometria e Turbidimetria , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Espalhamento de Radiação , Espectrofotometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , TemperaturaRESUMO
Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1(D198A)) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1(D189A) also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.
Assuntos
Retículo Endoplasmático/enzimologia , Galactosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Galactosiltransferases/genética , Complexo de Golgi/genética , Isoquinolinas/farmacologia , Camundongos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
We studied the thermal dependence of amide I' infrared absorption and fluorescence emission of Trp residues in the Na,K-ATPase of rabbit kidney. We studied the whole enzyme solubilized with detergent, the whole enzyme reconstituted in proteoliposomes and the protein fraction that remained in the lipid membrane after the trypsin digestion of the proteoliposomes. Cooperative unfolding and aggregation with increasing temperature were observed in the whole protein, whether solubilized or reconstituted, but not in the fraction remaining after trypsinization. The protein influenced the physical state of the lipid, decreasing the temperature of the gel to liquid-crystalline phase transition and the degree of cooperativity. This study provides new information for the understanding of the processes controlling the association mechanisms that are important for enzyme function in natural membranes.
Assuntos
Subunidades Proteicas/química , Proteolipídeos , ATPase Trocadora de Sódio-Potássio/química , Animais , Citoplasma/enzimologia , Rim/enzimologia , Lipídeos/química , Transição de Fase , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Coelhos , Solubilidade , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Temperatura , Tripsina/metabolismo , Triptofano/químicaRESUMO
We designed an experimental approach to differentiate the kinetics of protein binding to a lipid membrane from the kinetics of the associated conformational change in the protein. We measured the fluorescence intensity of the single Trp6 in chicken liver bile acid-binding protein (L-BABP) as a function of time after mixing the protein with lipid membranes. We mixed the protein with pure lipid membranes, with lipid membranes in the presence of a soluble quencher, and with lipid membranes containing a fluorescence quencher attached to the lipid polar head group. We fitted simultaneously the experimental curves to a three-state kinetic model. We conclude that in a first step, the binding of L-BABP to the interfacial region of the anionic lipid polar head groups occurred simultaneously with a conformational change to the partly unfolded state. In a second slower step, Trp6 buried within the polar head group region, releasing contacts with the aqueous phase.
Assuntos
Proteínas de Transporte/química , Glicoproteínas de Membrana/química , Modelos Químicos , Triptofano/química , Lipossomas Unilamelares/química , Animais , Galinhas , Fluorescência , Cinética , Ligação Proteica , Conformação Proteica , Dobramento de ProteínaRESUMO
Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na(+)/Ca(2+) exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far-UV circular dichroism and infrared spectra suggest a majority of beta-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten beta-sheets and two short alpha-helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.
Assuntos
Trifosfato de Adenosina/farmacologia , Decapodiformes/fisiologia , Gânglios/fisiologia , Neurônios/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Regiões 5' não Traduzidas/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Cinética , Dados de Sequência Molecular , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética , Espectrofotometria Infravermelho , Raios UltravioletaRESUMO
The treatment of electrostatic interactions in molecular simulations is of fundamental importance. Ewald and related methods are being increasingly used to the detriment of cutoff schemes, which are known to produce several artifacts. A potential drawback of the Ewald method is the spatial periodicity that is imposed to the system, which could produce artifacts when applied in the simulation of liquids. In this work we analyze the octaalanine peptide with charged termini in explicit solvent, for which severe effects due to the use of Ewald sums were predicted using continuum electrostatics. Molecular Dynamics simulations for a total of 158 nanoseconds were performed in cells of different sizes. From the comparison of the results of different system sizes, no significant periodicity-induced artifacts were observed. It is argued that in current biomolecular simulations, the incomplete sampling is likely to affect the results to a larger extent than the artifacts induced by the use of Ewald sums.
Assuntos
Alanina/química , Simulação por Computador , Fragmentos de Peptídeos/química , Conformação Proteica , Modelos MolecularesRESUMO
Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML). Competitive assays using various sugars showed that GalNAc was the strongest inhibitor, and that the hydroxyl axial position of C4 and acetamido on C2 of GalNAc are critical points of EML recognition. A hydrophobic locus adjacent to GalNAc is also an important region for EML binding. Direct binding assays of EML revealed a stereochemical requirement for a structure adjacent to terminal GalNAc, showing that GalNAc residue is a necessary but not sufficient condition for EML interaction. The capacity of EML to bind epithelial tumor cells makes it a potentially useful tool for study of some over-expressed GalNAc glycoconjugates.
Assuntos
Metabolismo dos Carboidratos , Euphorbia/química , Lectinas/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Camada Fina , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Dados de Sequência Molecular , EstereoisomerismoRESUMO
Chicken liver bile acid-binding protein (formerly known as chicken liver basic fatty acid-binding protein) binds to anionic lipid membranes acquiring a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B., and Montich, G. (2003) Biochim. Biophys. Acta 1611, 98-106]. To understand the mechanisms of its interactions with membranes, we have investigated the presence of partly folded states in solution. Using fluorescence spectroscopy of the single Trp residue, circular dichroism in the far- and near-UV, Fourier transform infrared spectroscopy, and size-exclusion chromatography, we found that L-BABP was partly unfolded at pH 2.5 and low ionic strength, retaining some of its secondary structure. Addition of 0.1 M NaCl at pH 2.5 or decreasing the pH to 1.5 produced a more compact partly folded state, with a partial increase of secondary structure and none of tertiary structure. Fluorescence emission spectra of this state indicate that the Trp residue is within an environment of low polarity, similar to the native state. This environment is not produced by the insertion of the Trp into soluble aggregates as revealed by size-exclusion chromatography, fluorescence anisotropy, and infrared spectroscopy. The presence of partly folded states under acidic conditions in solution suggests the possibility that membrane binding of L-BABP occurs via this state.
Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fígado/química , Fígado/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Dobramento de Proteína , Ácidos/química , Animais , Galinhas , Cromatografia em Gel , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Concentração Osmolar , Estrutura Secundária de Proteína , Soluções , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , TermodinâmicaRESUMO
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex.