Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Drug Resist ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029506

RESUMO

Background: Biofilm production in nonfermenting Gram-negative bacteria influences drug resistance. The aim of this work was to evaluate the effect of different antibiotics on biofilm eradication of clinical isolates of Achromobacter, Burkholderia, and Stenotrophomonas maltophilia. Methods: Clinical isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a third-level hospital in Monterrey, Mexico. Crystal violet staining was used to determine biofilm production. Drug susceptibility testing was determined by broth microdilution in planktonic cells and biofilm cells. Results: Resistance in planktonic cells was moderate to trimethoprim-sulfamethoxazole, and low to chloramphenicol, minocycline, levofloxacin (S. maltophilia and Burkholderia), ceftazidime, and meropenem (Burkholderia and Achromobacter). Biofilm eradication required higher drug concentrations of ceftazidime, chloramphenicol, levofloxacin, and trimethoprim-sulfamethoxazole than planktonic cells (p < 0.05). Levofloxacin showed biofilm eradication activity in S. maltophilia, minocycline and meropenem in Burkholderia, and meropenem in Achromobacter. Conclusions: Drug resistance increased due to biofilm production for some antibiotics, particularly ceftazidime and trimethoprim-sulfamethoxazole for all three pathogens, chloramphenicol for S. maltophilia and Burkholderia, and levofloxacin for Burkholderia. Some antibiotics could be used for the treatment of biofilm-associated infections in our population, such as levofloxacin for S. maltophilia, minocycline and meropenem for Burkholderia, and meropenem for Achromobacter.

2.
Jpn J Infect Dis ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825455

RESUMO

Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococci (MR-CoNS) are a clinical challenge for the treatment of healthcare-associated infections. As alternative antimicrobial options are needed, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles on the biofilm of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility testing was performed by broth microdilution. Nanoparticles were synthesized by co-precipitation of magnetic nanoparticles (MNP) and encapsulation by ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles with and without the addition of oxacillin was assessed on staphylococcal strains. Cur-Chi-MNP showed antimicrobial activity on planktonic cells of MRSA and MR-CoNS strains and inhibited biofilm of MRSA. The addition of OXA to Cur-Chi-MNP increased biofilm inhibition and eradication activity against all Staphylococci strains (p=0.0007); higher biofilm activity was observed in early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibition activity against S. aureus. The addition of OXA increased biofilm inhibition and eradication activity against all Staphylococci strains. A combination treatment of Cur-Chi-MNP and OXA could be potentially used to treat staphylococcal biofilm-associated infections in its early stages before the establishment of biofilm bacterial cells.

3.
Expert Rev Anti Infect Ther ; 21(2): 213-223, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625029

RESUMO

BACKGROUND: Non-fermenting Gram-negative Achromobacter xylosoxidans, Burkholderia cepacia complex, and Stenotrophomonas maltophilia species cause healthcare-associated infections, often showing resistance to first-line drugs such as trimethoprim-sulfamethoxazole (TMP-SXT). The aim of this study was to determine the effect of curcumin-chitosan nanocomplexes on biofilm-producing clinical isolates of non-fermenting Gram-negative bacilli. METHODS: A. xylosoxidans, B. cepacia complex, and S. maltophilia clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility was determined by broth microdilution. Curcumin (Cur), chitosan (Chi), and sodium tripolyphosphate (TPP) were encapsulated by ionotropic gelation in magnetic nanoparticles (MNP) and were assessed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR). Biofilm inhibition and eradication by Cur-Chi-TPP-MNP with TMP-SXT was assessed. RESULTS: Cur-Chi-TPP-MNP in combination with TMP-SXT showed biofilm inhibition activity in A. xylosoxidans (37.5 µg/mL), B. cepacia (18.75 µg/mL), and S. maltophilia (4.69-18.75 µg/mL) and low biofilm eradication activity in all three strains (150 - 300 µg/mL). CONCLUSIONS: Cur-Chi-TPP-MNP in combination with TMP-SXT was able to inhibit biofilm and in lower effect to eradicate established biofilms of clinical isolates of A. xylosoxidans, B. cepacia complex, and S. maltophilia species. Our results highlight the need to assess these potential treatment options to be used clinically in biofilm-associated infections.


Assuntos
Achromobacter , Burkholderia , Quitosana , Curcumina , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Curcumina/farmacologia , Stenotrophomonas , Quitosana/farmacologia , Quitosana/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA