Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2123487119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454749

RESUMO

Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.


Assuntos
Genes Reguladores , Poli A , Animais , Humanos , Camundongos , Complexo Antígeno-Anticorpo , Proteína C9orf72/genética , Dipeptídeos , Modelos Animais de Doenças
2.
Neuron ; 105(4): 645-662.e11, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31831332

RESUMO

The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Anticorpos Monoclonais/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Terapia Genética/métodos , Proteína ran de Ligação ao GTP/metabolismo , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/metabolismo , Marcação de Genes/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína ran de Ligação ao GTP/antagonistas & inibidores
3.
Neurobiol Dis ; 124: 276-288, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30381260

RESUMO

Aggregation of α-synuclein (α-syn) is neuropathologically and genetically linked to Parkinson's disease (PD). Since stereotypic cell-to-cell spreading of α-syn pathology is believed to contribute to disease progression, immunotherapy with antibodies directed against α-syn is considered a promising therapeutic approach for slowing disease progression. Here we report the identification, binding characteristics, and efficacy in PD mouse models of the human-derived α-syn antibody BIIB054, which is currently under investigation in a Phase 2 clinical trial for PD. BIIB054 was generated by screening human memory B-cell libraries from healthy elderly individuals. Epitope mapping studies conducted using peptide scanning, X-ray crystallography, and mutagenesis show that BIIB054 binds to α-syn residues 1-10. BIIB054 is highly selective for aggregated forms of α-syn with at least an 800-fold higher apparent affinity for fibrillar versus monomeric recombinant α-syn and a strong preference for human PD brain tissue. BIIB054 discriminates between monomers and oligomeric/fibrillar forms of α-syn based on high avidity for aggregates, driven by weak monovalent affinity and fast binding kinetics. In efficacy studies in three different mouse models with intracerebrally inoculated preformed α-syn fibrils, BIIB054 treatment attenuated the spreading of α-syn pathology, rescued motor impairments, and reduced the loss of dopamine transporter density in dopaminergic terminals in striatum. The preclinical data reported here provide a compelling rationale for clinical development of BIIB054 for the treatment and prevention of PD.


Assuntos
Anticorpos Monoclonais/farmacologia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/antagonistas & inibidores , Animais , Humanos , Camundongos , Fenótipo , Agregados Proteicos
4.
Sci Transl Med ; 10(470)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518612

RESUMO

Mutations in the gene encoding superoxide dismutase 1 (SOD1) lead to misfolding and aggregation of SOD1 and cause familial amyotrophic lateral sclerosis (FALS). However, the implications of wild-type SOD1 misfolding in sporadic forms of ALS (SALS) remain unclear. By screening human memory B cells from a large cohort of healthy elderly subjects, we generated a recombinant human monoclonal antibody (α-miSOD1) that selectively bound to misfolded SOD1, but not to physiological SOD1 dimers. On postmortem spinal cord sections from 121 patients with ALS, α-miSOD1 antibody identified misfolded SOD1 in a majority of cases, regardless of their SOD1 genotype. In contrast, the α-miSOD1 antibody did not bind to its epitope in most of the 41 postmortem spinal cord sections from non-neurological control (NNC) patients. In transgenic mice overexpressing disease-causing human SOD1G37R or SOD1G93A mutations, treatment with the α-miSOD1 antibody delayed the onset of motor symptoms, extended survival by up to 2 months, and reduced aggregation of misfolded SOD1 and motor neuron degeneration. These effects were obtained whether α-miSOD1 antibody treatment was administered by direct brain infusion or peripheral administration. These results support the further development of α-miSOD1 antibody as a candidate treatment for ALS involving misfolding of SOD1.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Anticorpos/uso terapêutico , Atividade Motora , Dobramento de Proteína/efeitos dos fármacos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos/administração & dosagem , Anticorpos/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação/patologia , Injeções Intraperitoneais , Injeções Intraventriculares , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Análise de Sobrevida
5.
Am J Pathol ; 187(6): 1399-1412, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28408124

RESUMO

The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Epitopos/imunologia , Feminino , Humanos , Interneurônios/metabolismo , Masculino , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Terapia de Alvo Molecular/métodos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Proteínas tau/antagonistas & inibidores , Proteínas tau/imunologia
6.
PLoS One ; 4(4): e5057, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19337375

RESUMO

Cellular prion protein (PrP(C)) is a physiological constituent of eukaryotic cells. The cellular pathways underlying prions spread from the sites of prions infection/peripheral replication to the central nervous system are still not elucidated. Membrane-derived microvesicles (MVs) are submicron (0.1-1 microm) particles, that are released by cells during plasma membrane shedding processes. They are usually liberated from different cell types, mainly upon activation as well as apoptosis, in this case, one of their hallmarks is the exposure of phosphatidylserine in the outer leaflet of the membrane. MVs are also characterized by the presence of adhesion molecules, MHC I molecules, as well as of membrane antigens typical of their cell of origin. Evidence exists that MVs shedding provide vehicles to transfer molecules among cells, and that MVs are important modulators of cell-to-cell communication. In this study we therefore analyzed the potential role of membrane-derived MVs in the mechanism(s) of PrP(C) diffusion and prion infectivity transmission. We first identified PrP(C) in association with the lipid raft components Fyn, flotillin-2, GM1 and GM3 in MVs from plasma of healthy human donors. Similar findings were found in MVs from cell culture supernatants of murine neuronal cells. Furthermore we demonstrated that PrP(Sc) is released from infected murine neuronal cells in association with plasma membrane-derived MVs and that PrP(Sc)-bearing MVs are infectious both in vitro and in vivo. The data suggest that MVs may contribute both to the intercellular mechanism(s) of PrP(C) diffusion and signaling as well as to the process of prion spread and neuroinvasion.


Assuntos
Proteínas PrPC/metabolismo , Príons/patogenicidade , Animais , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Microscopia Imunoeletrônica , Fosfatidilserinas/metabolismo
7.
J Neurosci Res ; 87(3): 806-19, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18831069

RESUMO

The cellular prion protein (PrP(C)) is a highly conserved glycoprotein of unknown biological function. To gain insight into the physiological role of PrP(C), we generated a novel PrP knockout cell line, named PrP(o/o) ML, by immortalization of neuroepithelial precursor cells derived from the cerebellum of PrP-knockout mice using the temperature-sensitive simian virus 40 (SV40) large T antigen. We demonstrated that the PrP(o/o) ML cell line is a unipotent precursor line with glutamatergic properties, which can acquire neuronal features when cultivated under specific conditions. The role of the prion protein in the process of neuronal differentiation was then analyzed in the PrP(o/o) ML cells reconstituted with either the full-length or an amino-terminally deleted form of the prion protein. We show that the expression of PrP(C) facilitates the processes of neuronal differentiation and neuritogenesis and that the deletion of its amino-terminal domain reduces the efficiency, but does not suppress this activity. This cell line represents a useful tool for studying PrP-dependent signal transduction pathways during differentiation of neuronal stem/precursor cells.


Assuntos
Neuritos/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA , Imunofluorescência , Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas PrPC/química , Deleção de Sequência , Temperatura , Transfecção
8.
J Immunol ; 174(9): 5526-36, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15843551

RESUMO

Affinity maturation and Ab class switches occur in lymphoid germinal centers (GCs), in which differentiation and maintenance depend on lymphotoxin (LT) signaling and include differentiation of follicular dendritic cells (FDCs). The events leading to FDC and GC maturation are poorly defined. Using several approaches of functional genomics, we enumerated transcripts affected in mice by suppressing LT beta receptor (LTbetaR) signaling and/or overrepresented in FDC-enriched GC isolates. Protein expression analysis of 3 of 12 genes both enriched in FDCs and down-regulated by LTbetaR signaling suppression validated them as FDC markers. Functional analysis of one of these three, clusterin, suggests a role as an FDC-derived trophic factor for GC B cells. Hence, the set of genes presented in this study includes markers emanating from LTbetaR signaling and transcripts relevant to GC and FDC function.


Assuntos
Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Perfilação da Expressão Gênica , Linfonodos/imunologia , Linfonodos/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Transcrição Gênica , Animais , Anticorpos Bloqueadores/administração & dosagem , Agregação Celular/genética , Agregação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Clusterina , Células Dendríticas Foliculares/química , Células Dendríticas Foliculares/citologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Glicoproteínas/genética , Glicoproteínas/fisiologia , Imuno-Histoquímica , Linfonodos/química , Linfonodos/citologia , Receptor beta de Linfotoxina , Mesentério , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/imunologia , Solubilidade
9.
J Virol ; 79(7): 4033-42, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15767405

RESUMO

Passive immunization with antibodies directed against the cellular form of the prion protein (PrPC) can protect against prion disease. However, active immunization with recombinant prion protein has so far failed to induce antibodies directed against native PrPC expressed on the cell surface. To develop an antiprion vaccine, a retroviral display system presenting either the full-length mouse PrP (PrP209) or the C-terminal 111 amino acids (PrP111) fused to the transmembrane domain of the platelet-derived growth factor receptor was established. Western blot analysis and immunogold electron microscopy of the retroviral display particles revealed successful incorporation of the fusion proteins into the particle membrane. Interestingly, retroviral particles displaying PrP111 (PrPD111 retroparticles) showed higher incorporation efficiencies than those displaying PrP209. Already 7 days after intravenous injection of PrPD111 retroparticles, PrPC-deficient mice (Prnp(o/o)) showed high immunoglobulin M (IgM) and IgG titers specifically binding the native PrPC molecule as expressed on the surface of T cells isolated from PrPC-overexpressing transgenic mice. More importantly, heterozygous Prnp(+/o) mice and also wild-type mice showed PrPC-specific IgM and IgG antibodies upon vaccination with PrPD111 retroparticles, albeit at considerably lower levels. Bacterially expressed recombinant PrP, in contrast, was unable to evoke IgG antibodies recognizing native PrPC in wild-type mice. Thus, our data show that PrP or parts thereof can be functionally displayed on retroviral particles and that immunization with PrP retroparticles may serve as a novel promising strategy for vaccination against transmissible spongiform encephalitis.


Assuntos
Anticorpos/sangue , Tolerância Imunológica , Proteínas PrPC/imunologia , Príons/imunologia , Retroviridae/genética , Adjuvantes Imunológicos , Animais , Anticorpos/imunologia , Reações Antígeno-Anticorpo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Doenças Priônicas/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Retroviridae/metabolismo , Vacinação
10.
J Neurosci ; 24(26): 5974-81, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15229245

RESUMO

Within the CNS, the normal form of cellular prion protein (PrP(C)) is expressed on neurons, oligodendrocytes, and astrocytes. The contribution of these cell types to prion replication and pathogenesis is unclear. To assess the role of oligodendrocytes, we expressed PrP(C) under the control of the myelin basic protein (MBP) promoter in mice lacking endogenous PrP(C). PrP(C) was detected in oligodendrocytes and Schwann cells but not in neurons and astrocytes. MBP-PrP mice never developed scrapie after intracerebral, intraperitoneal, or intraocular challenge with scrapie prions. Transgenic brains did not contain protease-resistant prion protein and did not transmit scrapie when inoculated into PrP(C)-overexpressing indicator mice. To investigate whether prion spread within the CNS depends on oligodendrocytic PrP(C), we implanted PrP(C)-overexpressing neuroectodermal grafts into MBP-PrP brains. After intraocular prion inoculation, none of the grafts showed spongiform encephalopathy or prion infectivity. Hence oligodendrocytes do not support cell-autonomous prion replication, establishment of subclinical disease, and neural spread of prions. Prion resistance sets oligodendrocytes aside from both neurons and astrocytes.


Assuntos
Oligodendroglia/citologia , Proteínas PrPC/metabolismo , Proteínas PrPSc/patogenicidade , Animais , Astrócitos/metabolismo , Feminino , Glicosilação , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Neurônios/metabolismo , Especificidade de Órgãos , Proteínas PrPC/deficiência , Proteínas PrPC/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Células de Schwann/metabolismo , Scrapie/etiologia , Extratos de Tecidos/efeitos adversos , Virulência , Vias Visuais/metabolismo
11.
Proc Natl Acad Sci U S A ; 99(2): 919-24, 2002 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11792852

RESUMO

Variant Creutzfeldt-Jakob disease and scrapie are typically initiated by extracerebral exposure to prions, and exhibit early prion accumulation in germinal centers. Follicular dendritic cells (FDCs), whose development and maintenance in germinal centers depends on tumor necrosis factor (TNF) and lymphotoxin (LT) signaling, are thought to be indispensable for extraneural prion pathogenesis. Here, we administered prions intraperitoneally to mice deficient for TNF and LT signaling components. LT alpha(-/-), LT beta(-/-), LT betaR(-/-), and LT alpha(-/-) x TNFalpha(-/-) mice resisted infection and contained no infectivity in spleens and lymph nodes (when present). However, TNFR1(-/-), TNFR2(-/-), and some TNFalpha(-/-) mice developed scrapie similarly to wild-type mice. High prion titers were detected in lymph nodes, but not spleens, of TNFR1(-/-) and TNF alpha(-/-) mice despite absence of FDCs and germinal centers. Transfer of TNFR1(-/-) fetal liver cells into lethally irradiated Prnp(0/0) mice restored infectivity mainly in lymph nodes. Prion protein (PrP) colocalized with a minority of macrophages in tumor necrosis factor receptor (TNFR) 1(-/-) lymph nodes. Therefore, prion pathogenesis can be restricted to lymphoreticular subcompartments, and mature follicular dendritic cells are dispensable for this process. Macrophage subsets are plausible candidates for lymphoreticular prion pathogenesis and neuroinvasion in the absence of FDCs, and may represent a novel target for postexposure prophylaxis.


Assuntos
Células Dendríticas Foliculares/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Doenças Priônicas/etiologia , Príons/metabolismo , Príons/patogenicidade , Animais , Antígenos CD/genética , Quimera , Humanos , Receptor beta de Linfotoxina , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Linfotoxina-beta , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...