Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lupus ; 23(9): 905-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24795067

RESUMO

BACKGROUND: Alternative therapeutic options are needed for patients with systemic lupus erythematosus (SLE) not adequately controlled with or intolerant to traditional treatments. This study evaluated the efficacy of Acthar® Gel (ACTH(1-39)) for reducing active SLE severity among patients receiving underlying conventional maintenance therapies. METHODS: Ten females (mean age = 49 yrs, disease duration = 7 yrs, Systemic Lupus Erythematosus Disease Activity Index-2000 [SLEDAI-2 K] = 10) currently on maintenance self-administered ACTH(1-39) gel 1 mL (80 U/mL) for 7-15 days and were assessed weekly for 28 days. Outcome measures included Physician and Patient Global Assessments, SLEDAI-2 K, Lupus Quality of Life scale, Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) scale, erythrocyte sedimentation rate, and C-reactive protein. Student's t-test compared data obtained at days 7, 14, and 28 with those from baseline. RESULTS: The primary endpoint of SLEDAI-2 K improvement was reached at all observation times (p < 0.05) and statistically significant improvements were observed for most other parameters. No treatment-related serious or unexpected adverse events were observed. CONCLUSIONS: The trial results reveal that among SLE patients in need of therapeutic alternatives, ACTH(1-39) gel may provide significant disease activity reduction.


Assuntos
Hormônio Adrenocorticotrópico/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Índice de Gravidade de Doença
2.
Phys Rev Lett ; 111(14): 141301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138230

RESUMO

Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

3.
Rev Sci Instrum ; 83(7): 073113, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852677

RESUMO

A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

4.
Appl Opt ; 47(24): 4418-28, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716649

RESUMO

The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

5.
Phys Rev Lett ; 86(16): 3475-9, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11328002

RESUMO

Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE DMR, provide consistent and high signal-to-noise measurements of the cosmic microwave background power spectrum at spherical harmonic multipole bands over 2

6.
Astrophys J ; 536(2): L59-L62, 2000 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-10859118

RESUMO

We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 µK(CMB).

7.
Nature ; 404(6781): 955-9, 2000 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-10801117

RESUMO

The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...