Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400496, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225774

RESUMO

Flavin-dependent halogenases (FDHs) are the most extensively researched halogenases and show great potential for biotransformation applications. These enzymes use chloride, bromide, or iodide ions as halogen donors to catalyze the oxygen-dependent halogenation of electron-rich aryl moieties, requiring stochiometric amounts of FADH2 in the process. This makes FDH-catalyzed aryl halogenation a highly selective and environmentally friendly tool for the synthesis of aryl halides. The latter in turn serve as valuable intermediates for transition metal catalyzed cross coupling reactions for C-C bond formation. Previous research made extensive use of this approach to halogenate small molecules as building blocks for late-stage functionalization by transition-metal catalyzed cross-coupling reactions. Based on these results, several groups have managed to expand this research to protein targets over the past two years. Their work indicates an emerging methodology for bioconjugation using late-stage biocatalytic halogenation in conjunction with biorthogonal Suzuki-Miyaura cross-coupling. This strategy could present an attractive alternative to existing approaches due to the stability of the C-C bond bridging the generated biaryl moiety and the ease of late-stage enzymatic modification while maintaining excellent selectivity under mild conditions.

2.
Angew Chem Int Ed Engl ; 63(5): e202314961, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38009455

RESUMO

Bio-orthogonal reactions for modification of proteins and unprotected peptides are of high value in chemical biology. The combination of enzymatic halogenation with transition metal-catalyzed cross-coupling provides a feasible approach for the modification of proteins and unprotected peptides. By a semirational protein engineering approach, variants of the tryptophan 6-halogenase Thal were identified that enable efficient bromination of peptides with a C-terminal tryptophan residue. The substrate scope was explored using di-, tri-, and tetrapeptide arrays, leading to the identification of an optimized peptide tag we named BromoTrp tag. This tag was introduced into three model proteins. Preparative scale post-translational bromination was possible with only a single cultivation and purification step using the brominating E. coli coexpression system Brocoli. Palladium-catalyzed Suzuki-Miyaura cross-coupling of the bromoarene was achieved with Pd nanoparticle catalysts at 37 °C, highlighting the rich potential of this strategy for bio-orthogonal functionalization and conjugation.


Assuntos
Halogenação , Triptofano , Triptofano/química , Escherichia coli/metabolismo , Peptídeos/química , Proteínas/metabolismo
3.
Chembiochem ; 24(22): e202300478, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549375

RESUMO

Flavin-dependent halogenases have attracted increasing interest for aryl halogenation at unactivated C-H positions because they are characterised by high regioselectivity, while requiring only FADH2 , halide salts, and O2 . Their use in combined crosslinked enzyme aggregates (combiCLEAs) together with an NADH-dependent flavin reductase and an NADH-regeneration system for the preparative halogenation of tryptophan and indole derivatives has been previously described. However, multiple cultivations and protein purification steps are necessary for their production. We present a bifunctional regeneration enzyme for two-step catalytic flavin regeneration using phosphite as an inexpensive sacrificial substrate. This fusion protein proved amenable to co-expression with various flavin-dependent Trp-halogenases and enables carrier-free immobilisation as combiCLEAs from a single cultivation for protein production and the preparative synthesis of halotryptophan. The scalability of this system was demonstrated by fed-batch fermentation in bench-top bioreactors on a 2.5 L scale. Furthermore, the inclusion of a 6-halotryptophan-specific dioxygenase into the co-expression strain further converts the halogenation product to the kynurenine derivative. This reaction cascade enables the one-pot synthesis of l-4-Cl-kynurenine and its brominated analogue on a preparative scale.


Assuntos
Halogenação , Oxirredutases , Oxirredutases/metabolismo , Cinurenina/metabolismo , NAD/metabolismo , Peptídeos/metabolismo , Flavinas/metabolismo , Regeneração
4.
Chembiochem ; 24(19): e202300425, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368451

RESUMO

An enzyme cascade was established previously consisting of a recycling system with an l-amino acid oxidase (hcLAAO4) and a catalase (hCAT) for different α-keto acid co-substrates of (S)-selective amine transaminases (ATAs) in kinetic resolutions of racemic amines. Only 1 mol % of the co-substrate was required and l-amino acids instead of α-keto acids could be applied. However, soluble enzymes cannot be reused easily. Immobilization of hcLAAO4, hCAT and the (S)-selective ATA from Vibrio fluvialis (ATA-Vfl) was addressed here. Immobilization of the enzymes together rather than on separate beads showed higher reaction rates most likely due to fast co-substrate channeling between ATA-Vfl and hcLAAO4 due to their close proximity. Co-immobilization allowed further reduction of the co-substrate amount to 0.1 mol % most likely due to a more efficient H2 O2 -removal caused by the stabilized hCAT and its proximity to hcLAAO4. Finally, the co-immobilized enzyme cascade was reused in 3 cycles of preparative kinetic resolutions to produce (R)-1-PEA with high enantiomeric purity (97.3 %ee). Further recycling was inefficient due to the instability of ATA-Vfl, while hcLAAO4 and hCAT revealed high stability. An engineered ATA-Vfl-8M was used in the co-immobilized enzyme cascade to produce (R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethanamine, an apremilast-intermediate, with a 1,000 fold lower input of the co-substrate.


Assuntos
Aminas , Transaminases , Aminas/química , Transaminases/química , L-Aminoácido Oxidase , Enzimas Imobilizadas/química , Catalase , Cetoácidos
5.
Chembiochem ; 24(1): e202200569, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259362

RESUMO

The late-stage site-selective derivatisation of peptides has many potential applications in structure-activity relationship studies and postsynthetic modification or conjugation of bioactive compounds. The development of orthogonal methods for C-H functionalisation is crucial for such peptide derivatisation. Among them, biocatalytic methods are increasingly attracting attention. Tryptophan halogenases emerged as valuable catalysts to functionalise tryptophan (Trp), while direct enzyme-catalysed halogenation of synthetic peptides is yet unprecedented. Here, it is reported that the Trp 6-halogenase Thal accepts a wide range of amides and peptides containing a Trp moiety. Increasing the sequence length and reaction optimisation made bromination of pentapeptides feasible with good turnovers and a broad sequence scope, while regioselectivity turned out to be sequence dependent. Comparison of X-ray single crystal structures of Thal in complex with d-Trp and a dipeptide revealed a significantly altered binding mode for the peptide. The viability of this bioorthogonal approach was exemplified by halogenation of a cyclic RGD peptide.


Assuntos
Halogenação , Triptofano , Triptofano/metabolismo , Peptídeos/metabolismo , Relação Estrutura-Atividade , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA