Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 636: 1416-1427, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913602

RESUMO

Sediments delivered to freshwater and marine environments can make important contributions to the aquatic bioavailable nutrient pool. In the Great Barrier Reef (GBR) catchments, particulate nutrients comprise an important fraction of the end of catchment loads; however, their contribution to the bioavailable nutrient pool is not well understood. This research determined which particulate nutrient parameters are the best indicators of the potential effect of fine sediment (<10 µm) on phytoplankton growth. Surface and subsurface sediments were lab-generated to cover a wide spectrum of particulate nutrient bioavailability from key soil types, land uses and erosion processes (hillslope and gully) in a wet and a dry tropics catchment of the GBR. Phytoplankton bioassays were used to assess freshwater and marine phytoplankton responses to sediments. The best indicators were selected by regressing measurements of phytoplankton growth against nutrient bioavailability parameters measured on the sediments. The selected indicator equations included organic carbon (C) pools for both fresh and marine water, highlighting the role of bacteria in mediating nutrient availability for phytoplankton. The equations also included various fractions of particulate nitrogen (N) (differentiating the adsorbed ammonium-N from the particulate organic N), and the ratios of C to N, which indicate the lability of the organic matter present in the sediment. Dissolved reactive phosphorus was also an important indicator in freshwater. The indicators performed better in assessing bioavailability potential than traditional methods to monitor particulate nutrients, e.g., particulate N and particulate phosphorus. Phytoplankton bioassays indicated that nutrients in sediment can promote phytoplankton growth, with nutrient bioavailability depending not only on sediment load, but also sediment characteristics associated with its parent soil. These characteristics vary with soil type, land use and erosion process. Findings will help prioritize erosion control to catchment areas which are most likely to contribute large amounts of bioavailable particulate nutrients to the GBR.


Assuntos
Recifes de Corais , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/fisiologia , Animais , Antozoários , Austrália , Ecossistema , Água Doce , Água do Mar
2.
Sci Total Environ ; 636: 1470-1479, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913607

RESUMO

Terrestrial particulate nutrients transported during flood events are known to indirectly fuel phytoplankton blooms in rivers, lakes and coastal waters, although the mechanisms are poorly understood. Quantifying the response of phytoplankton to nutrients in sediments eroded from catchments is fundamental to prioritizing areas for erosion control. This study developed a novel bioassay technique for rapidly assessing the effects of nutrients released from suspended sediments on the growth of marine and freshwater phytoplankton communities. A range of sediment slurries were placed in bioassay bottles within dialysis tubing in the presence of phytoplankton and their photosynthetic efficiency (Fv/Fm) was measured over 72 h. This allowed an assessment of the effects of dissolved nutrients released from sediments without the confounding effects of suspended sediments. Chlorophyll a concentrations were also measured for comparison with Fv/Fm. Our study showed Fv/Fm was an effective method for measuring phytoplankton responses to sediment slurries. Photosynthetic efficiency was a more sensitive response metric than chlorophyll a. Applying the method to a range of suspended sediments from two tropical catchments in Australia that drain into Great Barrier Reef coastal waters, we identified a subset of sediment types (~40%) that increased Fv/Fm under the bioassay conditions. These sediments have the potential to stimulate marine and freshwater phytoplankton growth under the loads simulated in this study. The bioassay has the advantage of being a rapid and relatively simple method where a large number of sediments can be simultaneously tested for a phytoplankton response. To our knowledge this is the first time Fv/Fm has been used to assess phytoplankton responses to sediments in a bioassay. This approach advances the use of Fv/Fm as a sensitive indicator of phytoplankton responses to nutrients and could be used to develop indices of the relative risk various sediments pose, hence support decision making for erosion control measures.


Assuntos
Bioensaio/métodos , Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/fisiologia , Austrália , Clorofila , Clorofila A , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...