Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(34): 10351-10361, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969658

RESUMO

This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization. High-pressure homogenization is simple but incorporates complex physical reactions, with many factors influencing the formation of PFC droplets and their coating. This work describes and interprets the impact of albumin concentration, homogenization pressure, and repeated microfluidizer passages on PFC-droplet formation; its influence on storage stability; and the overcoming of obstacles in preparing stable nanoemulsions. The applied methods comprise dynamic light scattering, static light scattering, cryo- and non-cryo-scanning and transmission electron microscopies, nuclear magnetic resonance spectroscopy, light microscopy, amperometric oxygen measurements, and biochemical methods. The use of this wide range of methods provided a sufficiently comprehensive picture of this polydisperse emulsion. Optimization of PFC-droplet formation by means of temperature and pressure gradients results in an emulsion with improved storage stability (tested up to 5 months) that possibly qualifies for clinical applications. Adaptations in the manufacturing process strikingly changed the physical properties of the emulsion but did not affect its oxygen capacity.


Assuntos
Fluorocarbonos , Albuminas , Emulsões/química , Fluorocarbonos/química , Oxigênio , Tamanho da Partícula
2.
Front Plant Sci ; 13: 889662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783940

RESUMO

Peroxisomes participate in several important metabolic processes in eukaryotic cells, such as the detoxification of reactive oxygen species (ROS) or the degradation of fatty acids by ß-oxidation. Recently, the presence of peroxisomes in the cryptophyte Guillardia theta and other "chromalveolates" was revealed by identifying proteins for peroxisomal biogenesis. Here, we investigated the subcellular localization of candidate proteins of G. theta in the diatom Phaeodactylum tricornutum, either possessing a putative peroxisomal targeting signal type 1 (PTS1) sequence or factors lacking a peroxisomal targeting signal but known to be involved in ß-oxidation. Our results indicate important contributions of the peroxisomes of G. theta to the carbohydrate, ether phospholipid, nucleotide, vitamin K, ROS, amino acid, and amine metabolisms. Moreover, our results suggest that in contrast to many other organisms, the peroxisomes of G. theta are not involved in the ß-oxidation of fatty acids, which exclusively seems to occur in the cryptophyte's mitochondria.

3.
Sci Adv ; 8(17): eabi5075, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486731

RESUMO

Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.

4.
New Phytol ; 233(4): 1797-1812, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882804

RESUMO

Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.


Assuntos
Diatomáceas , Sistemas CRISPR-Cas/genética , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
5.
Methods Enzymol ; 648: 435-455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579415

RESUMO

Plastic pollution has become a serious issue on Earth. Although efficient industrial recycling processes exist, a significant fraction of plastic waste still ends up in nature, where it can endure for centuries. Slow mechanical and chemical decay lead to the formation of micro- and nanoplastics, which are washed from land into rivers and finally end up in the oceans. As such particles cannot be efficiently removed from the environment, biological degradation mechanisms are highly desirable. Several enzymes have been described that are capable of degrading certain plastic materials such as polyethylene terephthalate (PET). Such enzymes have a huge potential for future biotechnology applications. However, they require model systems that can be efficiently adapted to very specific conditions. Here, we present detailed instructions, how to convert the model diatom Phaeodactylum into a solar-fueled microbial cell factory for PETase expression, resulting in a whole cell catalyst for PET degradation at moderate temperatures under saltwater conditions.


Assuntos
Microalgas , Polietilenotereftalatos , Oceanos e Mares , Plásticos
6.
Mar Pollut Bull ; 163: 111950, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444995

RESUMO

A big challenge of the 21st century is to cope with the huge amounts of plastic waste on Earth. Especially the oceans are heavily polluted with plastics. To counteract this issue, biological (enzymatic) plastic decomposition is increasingly gaining attention. Recently it was shown that polyethylene terephthalate (PET) can be degraded in a saltwater-based environment using bacterial PETase produced by a marine diatom. At moderate temperatures, plastic biodegradation is slow and requires sensitive methods for detection, at least at initial stages. However, conventional methods for verifying the plastic degradation are either complex, expensive, time-consuming or they interfere with the degradation process. Here, we adapt lensless digital holographic microscopy (LDHM) as a new application for efficiently monitoring enzymatic degradation of a PET glycol copolymer (PETG). LDHM is a cost-effective, compact and sensitive optical method. We demonstrate enzymatic PETG degradation over a time course of 43 days employing numerical analysis of LDHM images.


Assuntos
Microscopia , Plásticos , Bactérias , Biodegradação Ambiental , Oceanos e Mares
7.
Protist ; 171(1): 125715, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32062589

RESUMO

Phaeodactylum tricornutum is an ecologically and evolutionarily relevant microalga that has developed into an important model for molecular biological studies on organisms with complex plastids. The diatom is particularly suitable for in vivo protein localization analyses via fluorescence microscopy in which the green fluorescent protein (GFP) and its derivatives are dominantly used. Whereas GFP fluorescence emission is usually measured between 500 and 520nm in confocal microscopy, the autofluorescence of the P. tricornutum plastid is detected above 625nm. Here we established the fluorescent protein mRuby3 as tag for efficient in vivo protein localization studies by expressing a codon-optimized gene in P. tricornutum. mRuby3 was directed to seven different subcellular localizations by means of full-length marker protein or N-/C-terminal targeting signal fusions; its emission was detected efficiently between 580 and 605nm, being unequivocally distinguishable from the plastid autofluorescence in vivo. Moreover, mRuby3 proved to be highly suitable for co-localization experiments using confocal laser scanning microscopy in which mRuby3 fusion proteins were expressed in parallel with GFP-tagged proteins. Our results show the potential of mRuby3 for its application in studying protein targeting and localization in P. tricornutum, particularly underlining its compatibility with GFP and the plastid autofluorescence in signal detection.


Assuntos
Diatomáceas/metabolismo , Proteínas Luminescentes/metabolismo , Diatomáceas/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Microscopia Confocal , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Microb Cell Fact ; 19(1): 1, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898497

RESUMO

The author's middle name is missed out in the original publication of the article [1]. The correct coauthor's name is Tobias J. Erb.

9.
Sci Rep ; 10(1): 1167, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980711

RESUMO

The triose phosphate transporter (TPT) is one of the prerequisites to exchange metabolites between the cytosol and plastids. In this study, we demonstrated that the four plastid TPT homologues in the non-photosynthetic diatom Nitzschia sp. NIES-3581 were highly likely integrated into plastid envelope membranes similar to counterparts in the model photosynthetic diatom Phaeodactylum tricornutum, in terms of target membranes and C-terminal orientations. Three of the four Nitzschia TPT homologues are capable of transporting various metabolites into proteo-liposomes including triose phosphates (TPs) and phosphoenolpyruvate (PEP), the transport substrates sufficient to support the metabolic pathways retained in the non-photosynthetic diatom plastid. Phylogenetic analysis of TPTs and closely related transporter proteins indicated that diatoms and other algae with red alga-derived complex plastids possess only TPT homologues but lack homologues of the glucose 6-phosphate transporter (GPT), xylulose 5-phosphate transporter (XPT), and phosphoenolpyruvate transporter (PPT). Comparative sequence analysis suggests that many TPT homologues of red alga-derived complex plastids potentially have the ability to transport mainly TPs and PEP. TPTs transporting both TPs and PEP highly likely mediate a metabolic crosstalk between a red alga-derived complex plastid and the cytosol in photosynthetic and non-photosynthetic species, which explains the lack of PPTs in all the lineages with red alga-derived complex plastids. The PEP-transporting TPTs might have emerged in an early phase of endosymbiosis between a red alga and a eukaryote host, given the broad distribution of that type of transporters in all branches of red alga-derived complex plastid-bearing lineages, and have probably played a key role in the establishment and retention of a controllable, intracellular metabolic connection in those organisms.


Assuntos
Diatomáceas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Plastídeos/metabolismo , Rodófitas/ultraestrutura , Evolução Molecular , Genes Reporter , Membranas Intracelulares/metabolismo , Lipossomos , Proteínas de Transporte de Fosfato/isolamento & purificação , Fotossíntese , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Simbiose
10.
Microb Cell Fact ; 18(1): 171, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601227

RESUMO

BACKGROUND: The biological degradation of plastics is a promising method to counter the increasing pollution of our planet with artificial polymers and to develop eco-friendly recycling strategies. Polyethylene terephthalate (PET) is a thermoplast industrially produced from fossil feedstocks since the 1940s, nowadays prevalently used in bottle packaging and textiles. Although established industrial processes for PET recycling exist, large amounts of PET still end up in the environment-a significant portion thereof in the world's oceans. In 2016, Ideonella sakaiensis, a bacterium possessing the ability to degrade PET and use the degradation products as a sole carbon source for growth, was isolated. I. sakaiensis expresses a key enzyme responsible for the breakdown of PET into monomers: PETase. This hydrolase might possess huge potential for the development of biological PET degradation and recycling processes as well as bioremediation approaches of environmental plastic waste. RESULTS: Using the photosynthetic microalga Phaeodactylum tricornutum as a chassis we generated a microbial cell factory capable of producing and secreting an engineered version of PETase into the surrounding culture medium. Initial degradation experiments using culture supernatant at 30 °C showed that PETase possessed activity against PET and the copolymer polyethylene terephthalate glycol (PETG) with an approximately 80-fold higher turnover of low crystallinity PETG compared to bottle PET. Moreover, we show that diatom produced PETase was active against industrially shredded PET in a saltwater-based environment even at mesophilic temperatures (21 °C). The products resulting from the degradation of the PET substrate were mainly terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) estimated to be formed in the micromolar range under the selected reaction conditions. CONCLUSION: We provide a promising and eco-friendly solution for biological decomposition of PET waste in a saltwater-based environment by using a eukaryotic microalga instead of a bacterium as a model system. Our results show that via synthetic biology the diatom P. tricornutum indeed could be converted into a valuable chassis for biological PET degradation. Overall, this proof of principle study demonstrates the potential of the diatom system for future biotechnological applications in biological PET degradation especially for bioremediation approaches of PET polluted seawater.


Assuntos
Burkholderiales/metabolismo , Hidrolases/metabolismo , Microalgas/metabolismo , Polietilenotereftalatos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biologia Marinha , Microbiologia da Água
11.
Genome Biol Evol ; 11(6): 1618-1629, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31124562

RESUMO

Nucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated. We have analyzed pNMPs with unknown functions via Phyre2, a bioinformatic tool for prediction and modeling of protein structure, resulting in a functional annotation of 215 pNMPs out of 826 uncharacterized open reading frames of cryptophytes. The newly annotated proteins are predicted to participate in nucleomorph-specific functions such as chromosome organization and expression, as well as in modification and degradation of nucleomorph-encoded proteins. Additionally, we have functionally assigned nucleomorph-encoded, putatively plastid-targeted proteins among the reinvestigated pNMPs. Hints for a putative function in the periplastid compartment, the cytoplasm surrounding the nucleomorphs, emerge from the identification of pNMPs that might be homologs of endomembrane system-related proteins. These proteins are discussed in respect to their putative functions.


Assuntos
Criptófitas/citologia , Criptófitas/genética , Cromatina , Cromossomos , Fases de Leitura Aberta , Proteoma/genética
13.
BMC Biol ; 16(1): 137, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30482201

RESUMO

BACKGROUND: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. RESULTS: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. CONCLUSION: We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.


Assuntos
Criptófitas/genética , Evolução Molecular , Genoma , Plastídeos/genética , Proteínas de Algas/análise , Núcleo Celular/genética , Criptófitas/citologia , Filogenia , Triptofano-tRNA Ligase/análise
14.
Genome Biol Evol ; 10(10): 2834-2852, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247558

RESUMO

Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (ß-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called "chromalveolates") for the presence of genes encoding peroxins-factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only "chromalveolate" group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in "chromalveolates"are highlighted.


Assuntos
Criptófitas/metabolismo , Biogênese de Organelas , Peroxinas/metabolismo , Peroxissomos/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Criptófitas/genética , Peroxinas/genética , Filogenia , Domínios Proteicos
15.
Methods Mol Biol ; 1829: 381-394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987735

RESUMO

The in silico identification of proteins targeting to secondary plastids is a difficult task. Such plastids are complex in structure and can be surrounded by up to four membranes, which have to be crossed during import. Nucleus-encoded plastidial preproteins in organisms with secondary plastids contain specific N-terminal targeting signals, the so-called bipartite targeting signal (BTS) sequences consisting of a classical signal peptide followed by a transit peptide-like sequence, mediating this intricate process. As these signal sequences differ significantly from transit peptides of plastid preproteins in plants and other organisms with primary plastids, existing in silico tools for primary plastid targeting prediction are not directly suitable to detect nucleus-encoded proteins destined for the import into secondary plastids. In this chapter I describe the current state-of-the-art methods to reliably predict proteins that might be imported into secondary plastids of red- and green-algal origin using either the "classical" approach, which involves a combination of bits of information produced by existing in silico tools, or, if available, via consulting specifically developed algorithms.


Assuntos
Biologia Computacional/métodos , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Transporte Proteico , Clorófitas/metabolismo , Simulação por Computador , Proteínas de Plantas/genética , Rodófitas/metabolismo , Software
17.
Genome Biol Evol ; 9(11): 3108-3121, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126146

RESUMO

Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid ß-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites.


Assuntos
Evolução Biológica , Coccídios/citologia , Peroxissomos/genética , Toxoplasma/citologia , Coccídios/crescimento & desenvolvimento , Coccídios/metabolismo , Estágios do Ciclo de Vida , Oxirredutases , Peroxissomos/química , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/química , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
18.
Sci Rep ; 7(1): 11688, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916813

RESUMO

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.


Assuntos
Amebozoários/crescimento & desenvolvimento , Amebozoários/metabolismo , Kinetoplastida/crescimento & desenvolvimento , Kinetoplastida/metabolismo , Simbiose , Amebozoários/genética , Genoma de Protozoário , Kinetoplastida/genética , Análise de Sequência de DNA
19.
Bioessays ; 39(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28621807

RESUMO

Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism.


Assuntos
Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Animais , Compartimento Celular/genética , Membrana Celular/genética , Humanos , Modelos Biológicos
20.
Mol Biol Evol ; 34(9): 2355-2366, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549159

RESUMO

Nonphotosynthetic plastids retain important biological functions and are indispensable for cell viability. However, the detailed processes underlying the loss of plastidal functions other than photosynthesis remain to be fully understood. In this study, we used transcriptomics, subcellular localization, and phylogenetic analyses to characterize the biochemical complexity of the nonphotosynthetic plastids of the apochlorotic diatom Nitzschia sp. NIES-3581. We found that these plastids have lost isopentenyl pyrophosphate biosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase-based carbon fixation but have retained various proteins for other metabolic pathways, including amino acid biosynthesis, and a portion of the Calvin-Benson cycle comprised only of glycolysis/gluconeogenesis and the reductive pentose phosphate pathway (rPPP). While most genes for plastid proteins involved in these reactions appear to be phylogenetically related to plastid-targeted proteins found in photosynthetic relatives, we also identified a gene that most likely originated from a cytosolic protein gene. Based on organellar metabolic reconstructions of Nitzschia sp. NIES-3581 and the presence/absence of plastid sugar phosphate transporters, we propose that plastid proteins for glycolysis, gluconeogenesis, and rPPP are retained even after the loss of photosynthesis because they feed indispensable substrates to the amino acid biosynthesis pathways of the plastid. Given the correlated retention of the enzymes for plastid glycolysis, gluconeogenesis, and rPPP and those for plastid amino acid biosynthesis pathways in distantly related nonphotosynthetic plastids and cyanobacteria, we suggest that this substrate-level link with plastid amino acid biosynthesis is a key constraint against loss of the plastid glycolysis/gluconeogenesis and rPPP proteins in multiple independent lineages of nonphotosynthetic algae/plants.


Assuntos
Diatomáceas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Aminoácidos/biossíntese , Evolução Biológica , Citosol/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Fotossíntese/genética , Filogenia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...