Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 38(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437838

RESUMO

Glucocorticoid receptor ß (GRß) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRß functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRß complexed with the antagonist RU-486. The structure reveals that GRß binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRß are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRß do not contribute to RU-486 binding. Intriguingly, the GRß/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRß is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRß could repress transcription.


Assuntos
Receptores de Glucocorticoides/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Glucocorticoides/metabolismo , Humanos
2.
Nucleic Acids Res ; 45(15): 9138-9148, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911097

RESUMO

While most DNA polymerases discriminate against ribonucleotide triphosphate (rNTP) incorporation very effectively, the Family X member DNA polymerase µ (Pol µ) incorporates rNTPs almost as efficiently as deoxyribonucleotides. To gain insight into how this occurs, here we have used X-ray crystallography to describe the structures of pre- and post-catalytic complexes of Pol µ with a ribonucleotide bound at the active site. These structures reveal that Pol µ binds and incorporates a rNTP with normal active site geometry and no distortion of the DNA substrate or nucleotide. Moreover, a comparison of rNTP incorporation kinetics by wildtype and mutant Pol µ indicates that rNTP accommodation involves synergistic interactions with multiple active site residues not found in polymerases with greater discrimination. Together, the results are consistent with the hypothesis that rNTP incorporation by Pol µ is advantageous in gap-filling synthesis during DNA double strand break repair by nonhomologous end joining, particularly in nonreplicating cells containing very low deoxyribonucleotide concentrations.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/química , DNA/química , Desoxirribonucleotídeos/química , Ribonucleotídeos/química , Motivos de Aminoácidos , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/metabolismo , Especificidade por Substrato , Termodinâmica
3.
Nat Commun ; 8(1): 253, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811466

RESUMO

DNA polymerase (pol) µ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol µ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PPi. The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol µ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) µ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/genética , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Cinética , Modelos Moleculares , Nucleotídeos/metabolismo
4.
ACS Chem Biol ; 12(1): 73-82, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103688

RESUMO

Heparan sulfate (HS) is a sulfated polysaccharide exhibiting essential physiological functions. HS 6-O-sulfotransferase (6-OST) transfers a sulfo group to the 6-OH position of glucosamine units to confer a variety of HS biological activities. There are three different isoforms of 6-OST in the human genome. Here, we report crystal structures of the ternary complex of 6-OST with the sulfo donor analog 3'-phosphoadenosine 5'-phosphate and three different oligosaccharide substrates at 1.95 to 2.1 Å resolutions. Structural and mutational analyses reveal amino acid residues that contribute to catalysis and substrate recognition of 6-OST. Unexpectedly, the structures reveal 6-OST engages HS in a completely different orientation than other HS sulfotransferases and sheds light on the basic HS requirements for specificity. These findings also contribute structural information to understand mutations in human 6-OST isoform 1 associated with the human genetic disease idiopathic hypogonadotropic hypogonadism characterized by incomplete or lack of puberty.


Assuntos
Difosfato de Adenosina/metabolismo , Oligossacarídeos/metabolismo , Sulfotransferases/metabolismo , Difosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oligossacarídeos/química , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Sulfotransferases/química , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
5.
Nucleic Acids Res ; 44(8): 3946-57, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26969731

RESUMO

Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease-by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease.


Assuntos
Proteínas de Bactérias/química , Desoxirribonuclease I/química , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/metabolismo , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Alinhamento de Sequência , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(33): E4530-6, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240373

RESUMO

Among the many proteins used to repair DNA double-strand breaks by nonhomologous end joining (NHEJ) are two related family X DNA polymerases, Pol λ and Pol µ. Which of these two polymerases is preferentially used for filling DNA gaps during NHEJ partly depends on sequence complementarity at the break, with Pol λ and Pol µ repairing complementary and noncomplementary ends, respectively. To better understand these substrate preferences, we present crystal structures of Pol µ on a 2-nt gapped DNA substrate, representing three steps of the catalytic cycle. In striking contrast to Pol λ, Pol µ "skips" the first available template nucleotide, instead using the template base at the 5' end of the gap to direct nucleotide binding and incorporation. This remarkable divergence from canonical 3'-end gap filling is consistent with data on end-joining substrate specificity in cells, and provides insights into polymerase substrate choices during NHEJ.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Catálise , Cristalografia por Raios X , Dano ao DNA , DNA Polimerase beta/química , Humanos , Cinética , Conformação de Ácido Nucleico , Nucleotídeos/genética , Estrutura Secundária de Proteína , Análise de Sequência de DNA , Especificidade por Substrato
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2937-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372684

RESUMO

The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.


Assuntos
Proteínas de Bactérias/química , Endonucleases/química , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/química , Fatores de Virulência/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Endonucleases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , Alinhamento de Sequência , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Fatores de Virulência/genética
8.
Nat Struct Mol Biol ; 21(3): 253-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487959

RESUMO

DNA polymerase µ (Pol µ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3' ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol µ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol µ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol µ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol µ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3' ends.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/genética , Elétrons , Humanos , Cinética , Modelos Moleculares , Mutação , Nucleotídeos/química , Ligação Proteica , Especificidade por Substrato
9.
J Allergy Clin Immunol ; 132(6): 1420-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23915714

RESUMO

BACKGROUND: Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of approximately 100 amino acids, but the fold of the protein and its biological function are unknown. OBJECTIVE: We sought to determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. METHODS: nBla g 1 and recombinant constructs were compared by using ELISA with specific murine IgG and human IgE. The structure of Bla g 1 was determined by x-ray crystallography. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to examine the ligand-binding properties of the allergen. RESULTS: The structure of an rBla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by x-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic, and stearic acids were associated with nBla g 1 from cockroach frass. One unit of Bla g 1 was equivalent to 104 ng of allergen. CONCLUSIONS: Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with nonspecific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure.


Assuntos
Alérgenos/metabolismo , Asma/diagnóstico , Asma/imunologia , Imunoglobulina E/metabolismo , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Baratas , Cristalografia por Raios X , Digestão/genética , Exposição Ambiental/efeitos adversos , Humanos , Imunoglobulina E/imunologia , Lipídeos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Transgenes/genética
10.
J Biomol Screen ; 18(3): 247-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23015019

RESUMO

The human commensal pathogen Streptococcus pneumoniae expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA's role in DNA uptake during transformation contributes to gene transfer and genetic diversification. Moreover, EndA's nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'= 0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, six small molecules were confirmed as novel EndA inhibitors, some of which may have utility as research tools for understanding pneumococcal pathogenesis and for drug discovery.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Endodesoxirribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/antagonistas & inibidores , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Fluorescência , Proteínas de Membrana/metabolismo , Nuclease do Micrococo/antagonistas & inibidores , Nuclease do Micrococo/metabolismo , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
11.
Curr Opin Struct Biol ; 22(5): 550-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22840348

RESUMO

Heparan sulfates (HSs) have potential therapeutic value as anti-inflammatory and antimetastasis drugs, in addition to their current use as anticoagulants. Recent advances in chemoenzymatic synthesis of HS provide a way to conveniently produce homogenous HS with different biological properties. Crystal structures of sulfotransferases involved in this process are providing atomic detail of their substrate binding clefts and interactions with their HS substrates. In theory, the flexibility of this method can be increased by modifying the specificities of the sulfotransferases based on the structures, thereby producing a new array of products.


Assuntos
Sulfotransferases/biossíntese , Sulfotransferases/química , Animais , Cristalografia , Humanos , Especificidade por Substrato , Sulfotransferases/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-22684055

RESUMO

The role of ADAM-8 in cancer and inflammatory diseases such as allergy, arthritis and asthma makes it an attractive target for drug development. Therefore, the catalytic domain of human ADAM-8 was expressed, purified and crystallized in complex with a hydroxamic acid inhibitor, batimastat. The crystal structure of the enzyme-inhibitor complex was refined to 2.1 Å resolution. ADAM-8 has an overall fold similar to those of other ADAM members, including a central five-stranded ß-sheet and a catalytic Zn(2+) ion. However, unique differences within the S1' binding loop of ADAM-8 are observed which might be exploited to confer specificity and selectivity to ADAM-8 competitive inhibitors for the treatment of diseases involving this enzyme.


Assuntos
Proteínas ADAM/química , Domínio Catalítico , Proteínas de Membrana/química , Fenilalanina/análogos & derivados , Inibidores de Proteases/química , Tiofenos/química , Proteínas ADAM/metabolismo , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Desdobramento de Proteína , Tiofenos/metabolismo
13.
Nucleic Acids Res ; 40(15): 7518-27, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584622

RESUMO

Although most DNA polymerases discriminate against ribonucleotide triphosphaets (rNTPs) during DNA synthesis, recent studies have shown that large numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome. Here, we investigate how a DNA polymerase can stably incorporate an rNTP. The X-ray crystal structure of a variant of human DNA polymerase λ reveals that the rNTP occupies the nucleotide binding pocket without distortion of the active site, despite an unfavorable interaction between the 2'-O and Tyr505 backbone carbonyl. This indicates an energetically unstable binding state for the rNTP, stabilized by additional protein-nucleotide interactions. Supporting this idea is the 200-fold lower catalytic efficiency for rNTP relative to deoxyribonucleotide triphosphate (dNTP) incorporation, reflecting a higher apparent Km value for the rNTP. Furthermore, distortion observed in the structure of the post-catalytic product complex suggests that once the bond between the α- and ß-phosphates of the rNTP is broken, the unfavorable binding state of the ribonucleotide cannot be maintained. Finally, structural and biochemical evaluation of dNTP insertion onto an ribonucleotide monophosphate (rNMP)-terminated primer indicates that a primer-terminal rNMP does not impede extension. The results are relevant to how ribonucleotides are incorporated into DNA in vivo, during replication and during repair, perhaps especially in non-proliferating cells when rNTP:dNTP ratios are high.


Assuntos
DNA Polimerase beta/química , Ribonucleotídeos/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase beta/metabolismo , Humanos , Cinética , Modelos Moleculares , Ribonucleotídeos/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(14): 5265-70, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431632

RESUMO

Heparin is a polysaccharide-based natural product that is used clinically as an anticoagulant drug. Heparan sulfate 3-O-sulfotransferase (3-OST) is an enzyme that transfers a sulfo group to the 3-OH position of a glucosamine unit. 3-OST is present in multiple isoforms, and the polysaccharides modified by these different isoforms perform distinct biological functions. 3-OST isoform 1 (3-OST-1) is the key enzyme for the biosynthesis of anticoagulant heparin. Here, we report the crystal structure of the ternary complex of 3-OST-1, 3'-phosphoadenosine 5'-phosphate, and a heptasaccharide substrate. Comparisons to previously determined structures of 3-OST-3 reveal unique binding modes used by the different isoforms of 3-OST for distinguishing the fine structures of saccharide substrates. Our data demonstrate that the saccharide substrates display distinct conformations when interacting with the different 3-OST isoforms. Site-directed mutagenesis data suggest that several key amino residues, including Lys259, Thr256, and Trp283 in 3-OST-3 and Arg268 in 3-OST-1, play important roles in substrate binding and specificity between isoforms. These results deepen our understanding of the biosynthetic mechanism of heparan sulfate and provide structural information for engineering enzymes for an enhanced biosynthetic approach to heparin production.


Assuntos
Anticoagulantes/metabolismo , Heparina/biossíntese , Sulfotransferases/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfotransferases/química
15.
Nucleic Acids Res ; 39(2): 623-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846957

RESUMO

EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.


Assuntos
Proteínas de Bactérias/química , Endodesoxirribonucleases/química , Proteínas de Membrana/química , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Biossíntese de Proteínas , Espalhamento a Baixo Ângulo , Transcrição Gênica , Difração de Raios X
16.
Nucleic Acids Res ; 39(7): 2943-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21113026

RESUMO

EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host's neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ßßα-metal finger catalytic core augmented by an interesting 'finger-loop' interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.


Assuntos
Proteínas de Bactérias/química , Endodesoxirribonucleases/química , Proteínas de Membrana/química , Streptococcus pneumoniae/enzimologia , Alanina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Cátions Bivalentes/química , DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Imidazóis/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Ligação Proteica
17.
Protein Sci ; 19(5): 901-13, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20196072

RESUMO

Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.


Assuntos
Cristalização/métodos , Proteínas Periplásmicas de Ligação/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Animais , Antígenos de Dermatophagoides/biossíntese , Antígenos de Dermatophagoides/química , Antígenos de Dermatophagoides/genética , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Artrópodes , Sequência de Bases , Galinhas , Cristalografia por Raios X , Dermatophagoides pteronyssinus , Entropia , Proteínas Ligantes de Maltose , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Periplásmicas de Ligação/biossíntese , Proteínas Periplásmicas de Ligação/genética , Conformação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Sulfotransferases/biossíntese , Sulfotransferases/química , Sulfotransferases/genética
18.
DNA Repair (Amst) ; 9(4): 448-57, 2010 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-20138591

RESUMO

Saccharomyces cerevisiae MutLalpha is a heterodimer of Mlh1 and Pms1 that participates in DNA mismatch repair (MMR). Both proteins have weakly conserved C-terminal regions (CTDs), with the CTD of Pms1 harboring an essential endonuclease activity. These proteins also have conserved N-terminal domains (NTDs) that bind and hydrolyze ATP and bind to DNA. To better understand Pms1 functions and potential interactions with DNA and/or other proteins, we solved the 2.5A crystal structure of yeast Pms1 (yPms1) NTD. The structure is similar to the homologous NTDs of Escherichia coli MutL and human PMS2, including the site involved in ATP binding and hydrolysis. The structure reveals a number of conserved, positively charged surface residues that do not interact with other residues in the NTD and are therefore candidates for interactions with DNA, with the CTD and/or with other proteins. When these were replaced with glutamate, several replacements resulted in yeast strains with elevated mutation rates. Two replacements also resulted in NTDs with decreased DNA binding affinity in vitro, suggesting that these residues contribute to DNA binding that is important for mismatch repair. Elevated mutation rates also resulted from surface residue replacements that did not affect DNA binding, suggesting that these conserved residues serve other functions, possibly involving interactions with other MMR proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Proteínas MutL , Conformação Proteica
19.
DNA Repair (Amst) ; 7(8): 1340-51, 2008 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-18585102

RESUMO

Three of the four family X polymerases, DNA polymerase lambda, DNA polymerase mu, and TdT, have been associated with repair of double-strand DNA breaks by nonhomologous end-joining. Their involvement in this DNA repair process requires an N-terminal BRCT domain that mediates interaction with other protein factors required for recognition and binding of broken DNA ends. Here we present the NMR solution structure of the BRCT domain of DNA polymerase lambda, completing the structural portrait for this family of enzymes. Analysis of the overall fold of the polymerase lambda BRCT domain reveals structural similarity to the BRCT domains of polymerase mu and TdT, yet highlights some key sequence and structural differences that may account for important differences in the biological activities of these enzymes and their roles in nonhomologous end-joining. Mutagenesis studies indicate that the conserved Arg57 residue of Pol lambda plays a more critical role for binding to the XRCC4-Ligase IV complex than its structural homolog in Pol mu, Arg43. In contrast, the hydrophobic Leu60 residue of Pol lambda contributes less significantly to binding than the structurally homologous Phe46 residue of Pol mu. A third leucine residue involved in the binding and activity of Pol mu, is nonconservatively replaced by a glutamine in Pol lambda (Gln64) and, based on binding and activity data, is apparently unimportant for Pol lambda interactions with the NHEJ complex. In conclusion, both the structure of the Pol lambda BRCT domain and its mode of interaction with the other components of the NHEJ complex significantly differ from the two previously studied homologs, Pol mu and TdT.


Assuntos
DNA Polimerase beta/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Sequência de Bases , DNA Polimerase beta/química , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
20.
Nat Chem Biol ; 4(3): 200-2, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18223645

RESUMO

The biosynthesis of heparan sulfate (HS) involves an array of specialized sulfotransferases. Here, we present a study aimed at engineering the substrate specificity of different HS 3-O-sulfotransferase isoforms. Based on the crystal structures, we identified a pair of amino acid residues responsible for selecting the substrates. Mutations of these residues altered the substrate specificities. Our results demonstrate the feasibility of tailoring the specificity of sulfotransferases to modify HS with desired functions.


Assuntos
Heparitina Sulfato/biossíntese , Engenharia de Proteínas , Isoformas de Proteínas/metabolismo , Sulfotransferases/metabolismo , Sítios de Ligação , Configuração de Carboidratos , Estudos de Viabilidade , Heparitina Sulfato/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Especificidade por Substrato , Sulfotransferases/química , Sulfotransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA