Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 566-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428114

RESUMO

Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.

2.
Chemosphere ; 352: 141233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266882

RESUMO

Hydrogen production from water splitting combined with renewable electricity can provide a viable solution to the energy crisis. A novel MoS2/NiS2/Ni3S4 heterostructure is designed as a bifunctional electrocatalyst by facile hydrothermal method to demonstrate excellent electrocatalytic performance towards overall water splitting applications. MoS2/NiS2/Ni3S4 heterostructure necessitates a low overpotential of 81 mV and 210 mV to attain a current density of 10 mA cm-2 during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Consequently, the MoS2/NiS2/Ni3S4 heterostructure-based electrolyzer shows a low cell voltage of 1.54 V at 10 mA cm-2. The present work highlights the significance of the heterostructure configuration of transition metal sulfide-based electrocatalysts for electrochemical overall water splitting applications.


Assuntos
Eletricidade , Molibdênio , Hidrogênio , Oxigênio , Sulfetos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37795987

RESUMO

The utilization of hydrogen (H2) as a fuel source is hindered by the limited infrastructure and storage requirements. In contrast, ammonia (NH3) offers a promising solution as a hydrogen carrier due to its high energy density, liquid storage capacity, low cost, and sustainable manufacturing. NH3 has garnered significant attention as a key component in the development of next-generation refueling stations, aligning with the goal of a carbon-free economy. The electrochemical nitrogen reduction reaction (ENRR) enables the production of NH3 from nitrogen (N2) under ambient conditions. However, the low efficiency of the ENRR is limited by challenges such as the electron-stealing hydrogen evolution reaction (HER) and the breaking of the stable N2 triple bond. To address these limitations and enhance ENRR performance, we prepared Au@Cu2-xSe electrocatalysts with a core@shell structure using a seed-mediated growth method and a facile hot-injection method. The catalytic activity was evaluated using both an aqueous electrolyte of KOH solution and a nonaqueous electrolyte consisting of tetrahydrofuran (THF) solvent with lithium perchlorate and ethanol as proton donors. ENRR in both aqueous and nonaqueous electrolytes was facilitated by the synergistic interaction between Au and Cu2-xSe (copper selenide), forming an Ohmic junction between the metal and p-type semiconductor that effectively suppressed the HER. Furthermore, in nonaqueous conditions, the Cu vacancies in the Cu2-xSe layer of Au@Cu2-xSe promoted the formation of lithium nitride (Li3N), leading to improved NH3 production. The synergistic effect of Ohmic junctions and Cu vacancies in Au@Cu2-xSe led to significantly higher ammonia yield and faradaic efficiency (FE) in nonaqueous systems compared to those in aqueous conditions. The maximum NH3 yields were approximately 1.10 and 3.64 µg h-1 cm-2, with the corresponding FE of 2.24 and 67.52% for aqueous and nonaqueous electrolytes, respectively. This study demonstrates an attractive strategy for designing catalysts with increased ENRR activity by effectively engineering vacancies and heterojunctions in Cu-based electrocatalysts in both aqueous and nonaqueous media.

4.
Front Chem ; 11: 1178787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214487

RESUMO

The weight reduction of the bipolar plate (BP) is essential for commercializing unitized regenerative fuel cells (URFCs). In order to lighten the weight of the bipolar plate, we have used Pb/C composite powder as a cost-effective primary material, which is a mixture of low-density graphite and lead. Further, varied lead-carbon weight ratios (1: 8, 1:4, 1:1, 4:1, and 8:1) were investigated for fabricating the bipolar plate by hot-pressing process adding styrene-butadiene rubber (SBR) as a binder. The specific surface area, porosity, and microstructure characteristics corresponding to the varied lead-graphite ratio of the prepared bipolar plates were studied. The relative difference in conductivity upon the compressibility of the plates is also examined. Finally, the wettability and electrochemical properties of the prepared bipolar plates were evaluated through water contact angle and cyclic voltammetry analysis.

5.
Front Chem ; 11: 1122150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874069

RESUMO

Hydrogen has become an indispensable aspect of sustainable energy resources due to depleting fossil fuels and increasing pollution. Since hydrogen storage and transport is a major hindrance to expanding its applicability, green ammonia produced by electrochemical method is sourced as an efficient hydrogen carrier. Several heterostructured electrocatalysts are designed to achieve significantly higher electrocatalytic nitrogen reduction (NRR) activity for electrochemical ammonia production. In this study, we controlled the nitrogen reduction performances of Mo2C-Mo2N heterostructure electrocatalyst prepared by a simple one pot synthesis method. The prepared Mo2C-Mo2N0.92 heterostructure nanocomposites show clear phase formation for Mo2C and Mo2N0.92, respectively. The prepared Mo2C-Mo2N0.92 electrocatalysts deliver a maximum ammonia yield of about 9.6 µg h-1 cm-2 and a Faradaic efficiency (FE) of about 10.15%. The study reveals the improved nitrogen reduction performances of Mo2C-Mo2N0.92 electrocatalysts due to the combined activity of the Mo2C and Mo2N0.92 phases. In addition, the ammonia production from Mo2C-Mo2N0.92 electrocatalysts is intended by the associative nitrogen reduction mechanism on Mo2C phase and by Mars-van-Krevelen mechanism on Mo2N0.92 phase, respectively. This study suggests the importance of precisely tuning the electrocatalyst by heterostructure strategy to substantially achieve higher nitrogen reduction electrocatalytic activity.

6.
Sci Rep ; 7(1): 2582, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566708

RESUMO

Synthesis of morphologically well-defined crystals of metalloporphyrin by direct crystallization based on conventional anti-solvent crystallization method without using any additives has been rarely reported. Herein, we demonstrate an unconventional and additive-free synthetic method named reverse anti-solvent crystallization method to achieve well-defined zinc-porphyrin cube crystals by reversing the order of the addition of solvents. The extended first solvation shell effect mechanism is therefore suggested to support the synthetic process by providing a novel kinetic route for reaching the local supersaturation environment depending on the order of addition of solvents, which turned out to be critical to achieve clean cube morphology of the crystal. We believe that our work not only extends fundamental knowledge about the kinetic process in binary solvent systems, but also enables great opportunities for shape-directing crystallization of various organic and organometallic compounds.

7.
J Nanosci Nanotechnol ; 16(5): 4523-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483785

RESUMO

To investigate the tendency of Mn(2+)-ion exchange into zeolite Y, four single crystals of fully dehydrated Mn2+, Na(+)-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of Na75-Y (INa75I[Si117Al75,O384]-FAU) with aqueous of various concentrations by Mn2+ and Na+ in a total 0.05 M for molar ratios of 1:1 (crystal 1), 1:25 (crystal 2), 1:50 (crystal 3), and 1:100 (crystal 4), respectively, followed by vacuum dehydration at 400 degrees C. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3(-)m and were refined to the final error indices R1/wR2 = 0.0440/0.1545, 0.0369/0.1153, 0.0373/0.1091, and 0.0506/0.1667, respectively. Their unit-cell formulas are approximately LMn33.5Na8I[Si117Al75O384]-FAU, IMn20.5Na34I[Si117Al75O384]-FAU, IMn20.5Na34I[Si117Al75O384]-FAU, and IMn16.5Na42I[Si117Al75O384]-FAU, respectively. The degree of Mn2+-ion exchange increases from 44.3% to 89.1% with increasing the initial Mn2+ concentrations as Na+ content and the unit cell constant of the zeolite framework decrease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...