Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 82: 26-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267971

RESUMO

Inflammation is not only a self-defense response of the innate immune system, but also the pathogenesis mechanism of multiple diseases such as arthritis, neurodegeneration, and cancer. Curcuma zedoaria Roscoe (Zingiberaceae), an indigenous plant of India, has been used traditionally in Ayurveda and folk medicine. As part of our ongoing efforts to screen traditional medicinal plants exhibiting pharmacological potential and to characterize the compounds involved, we examined the anti-inflammatory effects of the MeOH extract of C. zedoaria rhizomes using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells and found that MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50: 23.44 ±â€¯0.77 µg/mL). In our efforts to characterize the compounds responsible for these anti-inflammatory effects, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active hexane-soluble fraction led to the successful isolation of five sesquiterpenes (1-5), the structures of which were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among them, curcuzedoalide (5) exhibited potent inhibitory effects on NO synthesis (IC50: 12.21 ±â€¯1.67 µM) and also suppressed pre-inflammatory protein expression of iNOS and COX-2. Curcuzedoalide (5) was thus determined to be a contributor to the anti-inflammatory effect of C. zedoaria rhizomes and could be a potential candidate for therapeutic applications.


Assuntos
Anti-Inflamatórios/farmacologia , Curcuma/química , Rizoma/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Ciclo-Oxigenase 2/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/toxicidade
2.
J Ginseng Res ; 42(4): 562-570, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337817

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS: Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION: Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 µM to 264.6 µM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.

3.
Bioorg Chem ; 81: 27-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30092384

RESUMO

Poria cocos Wolf confers edible sclerotia also known as 'Indian bread' in North America, that have been used for the treatment of various diseases in Asian countries. As part of our ongoing aim to identify biologically new metabolites from Korean edible mushrooms, we investigated the ethanol (EtOH) extract of the sclerotia of P. cocos by applying a comparative LC/MS- and bioassay-based analysis approach, since the EtOH extract reciprocally regulated adipocyte and osteoblast differentiation in mouse mesenchymal stem cells (MSCs). Bioassay-based analysis of the EtOH extract led to the successful isolation of two sterols, ergosterol peroxide (1) and 9,11-dehydroergosterol peroxide (2); three diterpenes, dehydroabietic acid (3), 7-oxocallitrisic acid, (4) and pimaric acid (5); and two triterpenes, dehydroeburicoic acid monoacetate (6) and eburicoic acid acetate (7) from the active hexane-soluble fraction. The isolated compounds (1-7) were examined for their effects on the regulation of MSC differentiation. The two sterols (1 and 2) were able to suppress MSC differentiation toward adipocytes. In contrast, the three diterpenes (3-5) showed activity to promote osteogenic differentiation of MSC. These findings demonstrate that the EtOH extract of P. cocos sclerotia is worth consideration as a new potential source of bioactive compounds effective in the treatment of osteoporosis in the elderly, since the extract contains sterols that inhibit adipogenic differentiation as well as diterpenes that promote osteogenic differentiation from MSCs.


Assuntos
Adipócitos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Wolfiporia/química , Abietanos/química , Abietanos/isolamento & purificação , Abietanos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Peróxidos/química , Peróxidos/isolamento & purificação , Peróxidos/farmacologia , Esteróis/química , Esteróis/isolamento & purificação , Esteróis/farmacologia , Relação Estrutura-Atividade
4.
J Agric Food Chem ; 66(11): 2677-2684, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29444566

RESUMO

Oryza sativa L. is consumed globally as a staple food, and its roots have been used as a Korean and Chinese medical supplement for protection of the stomach and lungs and for amelioration of vomiting and fever. In our continuing search for biologically effective metabolites from Korean natural materials, we found that an EtOH extract of O. sativa root reciprocally regulated adipocyte and osteoblast differentiation. Chemical analysis of the EtOH extract using a bioassay-guided fractionation protocol led to the isolation and determination of two novel lignans, oryzativols A and B, responsible for these regulatory activities. Using 1D and 2D nuclear magnetic resonance spectroscopic analyses, high-resolution mass spectrometry, and circular dichroism analysis, the structures of the novel compounds were elucidated. We examined their effects on the regulation of mesenchymal stem cell differentiation. Treatment with oryzativol A in the human mesenchymal cell line C3H10T1/2 suppressed gene expression of peroxisome proliferator activated receptor γ, which resulted in a reduction in adipogenesis. Oryzativol A also enhanced the expression of Runx2 and cellular differentiation into osteoblasts in the same mesenchymal stem cell line.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Oryza/química , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química
5.
Mol Neurobiol ; 55(4): 3007-3020, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456941

RESUMO

The signaling axis of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) has been an important component in overcoming diabetes, and recent reports have uncovered novel beneficial roles of this signaling axis in central nervous system (CNS) disorders, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia, accelerating processes for exendin-4 repositioning. Here, we studied whether multiple sclerosis (MS) could be a complement to the CNS disorders that are associated with the GLP-1/GLP-1R signaling axis. Both components of the signaling axis, GLP-1 and GLP-1R proteins, are expressed in neurons, astrocytes, and microglia in the spinal cord of normal mice. In particular, they are abundant in Iba1-positive microglia. Upon challenge by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, the mRNA expression of both GLP-1 and GLP-1R was markedly downregulated in EAE-symptomatic spinal cords, indicating attenuated activity of GLP-1/GLP-1R signaling in EAE. Such a downregulation obviously occurred in LPS-stimulated rat primary microglia, a main cell type to express both GLP-1 and GLP-1R, further indicating attenuated activity of GLP-1/GLP-1R signaling in activated microglia. To investigate whether increased activity of GLP-1R has a therapeutic benefit, exendin-4 (5 µg/kg, i.p.), a GLP-1R agonist, was administered daily to EAE-symptomatic mice. Exendin-4 administration to symptomatic EAE mice significantly improved the clinical signs of the disease, along with the reversal of histopathological sequelae such as cell accumulation, demyelination, astrogliosis, microglial activation, and morphological transformation of activated microglia in the injured spinal cord. Such an improvement by exendin-4 was comparable to that by FTY720 (3 mg/kg, i.p.), a drug for MS. The neuroprotective effects of exendin-4 against EAE were also associated with decreased mRNA expression of proinflammatory cytokines, such as interleukin (IL)-17, IL-1ß, IL-6, and tumor necrosis factor (TNF)-α, all of which are usually upregulated in injured sites of the EAE spinal cord. Interestingly, exendin-4 exposure similarly reduced mRNA levels of IL-1ß and TNF-α in LPS-stimulated microglia. Furthermore, exendin-4 administration significantly attenuated activation of NF-κB signaling in EAE spinal cord and LPS-stimulated microglia. Collectively, the current study demonstrates the therapeutic potential of exendin-4 for MS by reducing immune responses in the CNS, highlighting the importance of the GLP-1/GLP-1R signaling axis in the development of a novel therapeutic strategy for MS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Inflamação/patologia , Neuroproteção , Animais , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/genética , Exenatida/administração & dosagem , Exenatida/farmacologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Neuroproteção/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Medula Espinal/patologia
6.
Bioorg Med Chem Lett ; 28(2): 122-128, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29223588

RESUMO

Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae), known as Chinese bushclover or sericea lespedeza, has been used in traditional medicine to treat diabetes, hematuria, and insomnia, and it has been reported that bioactive compounds from L. cuneata possess various pharmacological properties. However, there has been no study to determine the active compounds from L. cuneata with potential activity against ovarian cancer. This study aimed to isolate cytotoxic compounds from L. cuneata and identify the molecular mechanisms underlying the apoptosis pathway in ovarian cancer cells. Based on cytotoxic activity identified in the screening test, chemical investigation of the active fraction of L. cuneata led to the isolation of nine compounds including four lignanosides (1-4), three flavonoid glycosides (5-7), and two phenolics (8-9). Cytotoxicity and the molecular mechanism were examined by methyl thiazolyl tetrazolium (MTT) assay and Western blot analysis. Of the isolated compounds, (-)-9'-O-(α-l-rhamnopyranosyl)lyoniresinol (3) demonstrated the strongest effect in suppressing A2780 human ovarian carcinoma cell proliferation in a dose-dependent manner, with an IC50 value of 35.40 ±â€¯2.78 µM. Control A2780 cells had normal morphology, whereas cell blebbing, shrinkage, and condensation were observed after treatment with compound 3. Western blotting analysis showed that compound 3 inhibited A2780 human ovarian cancer cell viability by activating caspase-8, caspase-3, and PARP, which contributed to apoptotic cell death. These results suggest that (-)-9'-O-(α-l-rhamnopyranosyl)lyoniresinol (3) has potent anticancer activities against A2780 human ovarian carcinoma cells through the extrinsic apoptotic pathway. Therefore, (-)-9'-O-(α-l-rhamnopyranosyl)lyoniresinol is an excellent candidate for the development of novel chemotherapeutics.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Lespedeza/química , Monossacarídeos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Relação Estrutura-Atividade
7.
Bioorg Chem ; 74: 122-125, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28778013

RESUMO

Lindera glauca (Sieb. et Zucc.) Blume (Lauraceae) has been used to treat rheumatic arthritis, stroke, and cardiac pain. Phytochemical investigation of twigs of L. glauca (Sieb. et Zucc.) Blume resulted in the isolation and identification of a new cerebroside, glaucerebroside (1). The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including extensive 2D NMR, HR-MS, chemical reactions, and LC/MS analysis. Compound 1 is a relatively rare cerebroside with l-threo-configuration of the sphingosine part. This is the second example of identification of a cerebroside from the family Lauraceae. Compound 1 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV-2 cells, with an IC50 value of 23.84µM without inducing cell toxicity. This study suggests that glaucerebroside (1) can be an excellent candidate for development of novel anti-neuroinflammatory agents.


Assuntos
Cerebrosídeos/farmacologia , Lindera/química , Caules de Planta/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Conformação Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Relação Estrutura-Atividade
8.
Bioorg Chem ; 70: 94-99, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27912907

RESUMO

Poria cocos Wolf (Polyporaceae) has been used as a medicinal fungus to treat various diseases since ancient times. This study aimed to investigate the anti-inflammatory chemical constituents of the sclerotia of P. cocos. Based on bioassay-guided fractionation using lipopolysaccharide (LPS)-stimulated Raw264.7 cells, chemical investigation of the EtOH extract of the sclerotia of P. cocos resulted in the isolation and identification of eight compounds including six triterpenoids, namely poricoic acid A (1), 3-O-acetyl-16α-hydroxydehydrotrametenolic acid (2), polyporenic acid C (3), 3ß-hydroxylanosta-7,9(11),24-trien-21-oic acid (4), trametenolic acid (5), and dehydroeburicoic acid (6), as well as (-)-pinoresinol (7) and protocatechualdehyde (8). The structures of the isolated compounds were determined by spectroscopic analysis, including 1H and 13C NMR spectra, and LC/MS analysis. The anti-inflammatory activities of the isolates were evaluated by estimating their effect on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated Raw264.7 as well as on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compounds 1-5 inhibited NO production and iNOS expression in LPS-stimulated Raw264.7 cells. Among them, compound 1 exerted the highest anti-inhibitory activity and reduced PGE2 levels via downregulation of COX-2 protein expression. The findings of this study provide experimental evidence that the sclerotia of P. cocos are a potential source of natural anti-inflammatory agents for use in pharmaceuticals and functional foods. Furthermore, the most active compound 1, seco-lanostane triterpenoid, could be a promising lead compound for the development of novel anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Wolfiporia/química , Animais , Anti-Inflamatórios/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Células RAW 264.7 , Triterpenos/isolamento & purificação
9.
Arch Pharm Res ; 39(12): 1628-1634, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27620498

RESUMO

A new rearranged eudesmane sesquiterpene, named eudeglaucone (1), and five known sesquiterpenes including (+)-faurinone (2) and four eudesmane-type sesquiterpenes (3-6), were isolated from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including extensive 2D NMR (1H-1H COSY, HMQC, HMBC, and NOESY) and HR-MS. Compound 1 was a relatively rare rearranged eudesmane sesquiterpene in terpenoids. All isolates were evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15). Compounds 3 and 6 showed significant cytotoxicity against SK-MEL-2 and HCT-15 cell lines with IC50 values ranging from 9.98 to 12.20 µM. We also investigated the anti-neuroinflammatory activities of the isolates (1-6) in the lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cell line by measuring nitric oxide (NO) levels. All isolates significantly inhibited NO production with IC50 values of 3.67-26.48 µM without inducing cell toxicity.


Assuntos
Lindera , Caules de Planta , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/isolamento & purificação , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/fisiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Sesquiterpenos de Eudesmano/farmacologia
10.
Chem Biodivers ; 13(10): 1391-1396, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27447684

RESUMO

A new sesquilignan, euonymolin A (1), and six known lignans, (-)-de-O-methylmagnolin (2), (+)-de-O-methylepimagnolin A (3), (+)-syringaresinol (4), (+)-pinoresinol (5), (+)-medioresinol (6), and (+)-lariciresinol 4'-O-ß-d-glucopyranoside (7), were isolated from the twigs of Euonymus alatus (Thunb.) Siebold (Celastraceae). The structures of the isolated compounds were elucidated based on spectroscopic analyses, including extensive 1D- and 2D-NMR techniques, HR-MS analysis and circular dichroism (CD) data, and the literature data. All of the isolated compounds were evaluated for antiproliferative activity against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines and inhibition of nitric oxide (NO) production in a lipopolysaccharide (LPS)-activated BV2 cell line. All compounds showed cytotoxicity against the SK-MEL-2 cell line with IC50 values of 23.24 - 48.14 µm and inhibited NO production in LPS-activated BV-2 cells with IC50 values of 6.75 - 23.53 µm.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Euonymus/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Óxido Nítrico/biossíntese , Caules de Planta/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lignanas/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Mol Neurobiol ; 53(1): 231-239, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25421209

RESUMO

The neutrophil collagenase matrix metalloproteinase-8 (MMP8) is a recently identified member of MMPs that have important roles in various inflammation-related disorders. Previously, we identified MMP8 as a new neuroinflammatory mediator in activated microglia by regulating TNF-α productivity. Here, we present evidence that MMP8 is a critical factor for brain damage in transient focal cerebral ischemia by modulating neuroinflammation likely microglial activation and TNF-α production. Biochemical analyses showed upregulation of MMP8 expression at mRNA and protein levels in transient middle cerebral artery occlusion/reperfusion (M/R)-challenged brains. Furthermore, double immunolabeling showed that MMP8 expression was upregulated in the activated microglia of M/R-challenged brains. Assessment of infarct volume, neurological score, and survival/death of neural cells revealed that administration of an MMP8 inhibitor (M8I) immediately after reperfusion reduced brain damage. Histological analyses showed that microglial activation and TNF-α expression in ischemic conditions was abrogated by exposure to M8I, as demonstrated in our previous study using cultured microglia. These outcomes from a pharmacological approach were reaffirmed by a genetic approach using a lentiviral system. Intracerebroventricular microinjection of MMP8-specific shRNA lentivirus reduced the extent of ischemia-induced brain damage, as assessed by infarct volume, neurological score, microglial activation, and TNF-α expression. These results suggest a novel pathogenetic role of MMP8 and implicate modulation of its activity as a tractable strategy for therapies against cerebral ischemia.


Assuntos
Isquemia Encefálica/enzimologia , Metaloproteinase 8 da Matriz/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Claudina-5/metabolismo , Regulação para Baixo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Inflamação/patologia , Lentivirus/metabolismo , Masculino , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/metabolismo , Reperfusão , Regulação para Cima/efeitos dos fármacos
12.
Mediators Inflamm ; 2015: 492659, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26576074

RESUMO

Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.


Assuntos
Isquemia Encefálica/prevenção & controle , Lisofosfolipídeos/fisiologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/análogos & derivados , Acidente Vascular Cerebral/prevenção & controle , Animais , Barreira Hematoencefálica , Isquemia Encefálica/etiologia , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Transdução de Sinais , Esfingosina/fisiologia , Esfingosina/toxicidade , Acidente Vascular Cerebral/etiologia , Fator de Necrose Tumoral alfa/análise
13.
Chem Pharm Bull (Tokyo) ; 63(10): 837-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423042

RESUMO

As part of our ongoing search for bioactive constituents of natural Korean medicinal resources, we found in a preliminary study that the methanol (MeOH) extract from the trunks of Tilia amurensis RUPR. showed an inhibitory effect on nitric oxide (NO) production in an activated murine microglial cell line. A bioassay-guided fractionation and chemical investigation of the MeOH extract resulted in the isolation and identification of a new isoflavonoid glycoside, orobol 4'-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (1) and 16 known compounds (2-17). The structure of the new compound was determined by spectroscopic methods, i.e., one-dimensional (1D) and two-dimensional (2D)-NMR techniques and high resolution (HR)-MS, and chemical methods. The antineuroinflammatory activities of the isolated compounds were determined by measuring NO levels in the medium using murine microglial BV-2 cells. Among them, 12 compounds, including compound 1 (most active with an IC50 value of 23.42 µM), inhibited NO production in lipopolysaccharide-stimulated BV-2 cells. Moreover, compounds 1-4 showed moderate antiproliferative activities against the SK-MEL-2 cell line, with IC50 values ranging from 12.31 to 19.67 µM.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Isoflavonas/química , Isoflavonas/farmacologia , Tilia/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Neoplasias/tratamento farmacológico , Óxido Nítrico/imunologia
14.
J Ethnopharmacol ; 162: 231-7, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582488

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Toxicodendron vernicifluum (Stokes) F.A. Barkley (Anacardiaceae) has traditionally been used as a food supplement and in traditional herbal medicine to treat inflammatory diseases and cancers for centuries in Korea. This study was designed to isolate the bioactive constituents from the ethanol extract of Toxicodendron vernicifluum bark and evaluate their cytotoxic and anti-inflammatory activities. MATERIAL AND METHODS: Bioassay-guided fractionation and chemical investigation of the ethanol extract of Toxicodendron vernicifluum bark resulted in the isolation and identification of three new polyphenols (1-3) and six flavonoids (4-9). The structures of the isolated compounds were elucidated by spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) ((1)H, (13)C, COSY, HMQC and HMBC experiments), and high resolution (HR)-mass spectrometry, and their absolute configurations were further confirmed by chemical methods and circular dichroism (CD) data analysis. Compounds 1-9 were evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15), and anti-inflammatory activities by measuring nitric oxide (NO) levels in the medium of murine microglia BV-2 cells. RESULTS: The isolated compounds were characterized as in the following: three new polyphenols, rhusopolyphenols G-I (1-3) and six flavonoids including two aurones, 2-benzyl-2,3',4',6-tetrahydroxybenzo[b]furan-3(2H)-one (4), sulfuretin (5), two dihydroflavonols, (+)-(2S,3R)-fustin (6), (+)-epitaxifolin (7), one chalcone, butein (8), and one flavonol, fisetin (9). The published NMR assignments of 4 were corrected by the detailed analysis of spectroscopic data in this study. Among the tested compounds, compounds 4-9 showed antiproliferative activity against the tested cells, with IC50 values of 4.78-28.89 µM. Compounds 5 and 8 significantly inhibited NO production in lipopolysaccharide (LPS)-stimulated BV-2 cells with IC50 values of 23.37 and 11.68 µM, respectively. CONCLUSIONS: Polyphenols including flavonoids were one of the main constituents of Toxicodendron vernicifluum bark, and activities demonstrated by the isolated compounds support the ethnopharmacological use of Toxicodendron vernicifluum as anti-cancer and/or anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Casca de Planta/química , Toxicodendron/química , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Estrutura Molecular
15.
J Proteomics ; 117: 70-85, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25576851

RESUMO

Photodamage is extrinsically induced by overexposure to ultraviolet (UV) radiation, and it increases the risk of various skin disorders. Therefore, discovery of novel biomarkers of photodamage is important. In this study, using LC-MS/MS analysis of epidermis from UVB-irradiated hairless mice, we identified 57 proteins whose levels changed after UVB exposure, and selected 7 proteins related to the tricarboxylic acid (TCA) cycle through pathway analysis. Dihydrolipoyl dehydrogenase (DLD) was the only TCA cycle-associated protein that showed a decreased expression after the UVB exposure. We also performed targeted analysis to detect intermediates and products of the TCA cycle using GC-TOF-MS. Interestingly, malic acid and fumaric acid levels significantly decreased in the UVB-treated group. Our results demonstrate that DLD and its associated metabolites, malic acid and fumaric acid, may be candidate biomarkers of UVB-induced skin photoaging. Additionally, we showed that Aloe vera, a natural skin moisturizer, regulated DLD, malic acid and fumaric acid levels in UVB-exposed epidermis. Our strategy to integrate the proteome and targeted metabolite to detect novel UVB targets will lead to a better understanding of skin photoaging and photodamage. Our study also supports that A. vera exerts significant anti-photodamage activity via regulation of DLD, a novel UVB target, in the epidermis. BIOLOGICAL SIGNIFICANCE: This study is the first example of an integration of proteomic and metabolite analysis techniques to find new biomarker candidates for the regulation of the UVB-induced skin photoaging. DLD, malic acid, and fumaric acid can be used for development of cosmeceuticals and nutraceuticals regulating the change of skin metabolism induced by the UVB overexposure. Moreover, this is also the first attempt to investigate the role of the TCA cycle in photodamaged epidermis. Our integration of the proteomic and targeted metabolite analyses will lead to a better understanding of the unidentified photobiological results from UVB-irradiated models and can elicit new diagnostic and treatment strategies based on altered metabolism.


Assuntos
Di-Hidrolipoamida Desidrogenase/biossíntese , Epiderme/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta , Aloe/química , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Pelados , Proteômica , Envelhecimento da Pele/efeitos dos fármacos , Creme para a Pele/química , Creme para a Pele/farmacologia
16.
J Antibiot (Tokyo) ; 68(6): 414-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25627016
17.
Bioorg Med Chem Lett ; 25(1): 96-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466198

RESUMO

A bioassay-guided fractionation and chemical investigation of the MeOH extract of Raphanus sativus seeds resulted in the isolation and identification of eight phenylpropanoid sucrosides (1-8) including two new compounds, named raphasativuside A and B (1-2) from the most active CHCl3-soluble fraction. The structures of these new compounds were elucidated through spectral analysis, including extensive 2D-NMR data, and chemical reaction experiments. We evaluated the anti-inflammatory effects of 1-8 in lipopolysaccharide (LPS)-stimulated murine microglia BV2 cells. Compounds 2 and 5 exhibited significant inhibitory effect on nitric oxide production in LPS-activated BV-2 cells with IC50 values of 21.63 and 26.96 µM, respectively. All isolates were also evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15). Compounds 1-7 showed consistent cytotoxicity against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines with IC50 values of 6.71-27.92 µM. Additionally, the free-radical scavenging activity of 1-8 was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay where compounds 1, 3, and 4 scavenged DPPH radical strongly with IC50 values of 23.05, 27.10, and 29.63 µg/mL, respectively.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Fenilpropionatos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Raphanus , Sementes , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
18.
Biomol Ther (Seoul) ; 22(5): 445-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25414776

RESUMO

The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study.

19.
Chem Pharm Bull (Tokyo) ; 62(11): 1136-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25366316

RESUMO

A bioassay-guided fractionation and chemical investigation of the MeOH extract from the twigs of Lindera glauca (SIEB. et ZUCC.) BLUME resulted in the isolation and identification of six lignans (1-6) including three new lignan derivatives, named linderuca A (1), B (2), and C (3). The structures of the new compounds (1-3) were determined on the basis of spectroscopic analyses, including two dimensional NMR and circular dichroism (CD) spectroscopy studies. The cytotoxic activities of the isolates (1-6) were evaluated by determining their inhibitory effects on human tumor cell lines. Compounds 1-5 showed antiproliferative activities against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines with IC50 values of 7.79-29.42 µM. Based on the understanding that inflammation is a crucial cause of tumor progression, we also investigated the anti-inflammatory activities of the isolates (1-6) in the lipopolysaccharide-stimulated murine microglia BV-2 cell line by measuring nitric oxide (NO) levels. The new lignans (1-3) significantly inhibited NO production with IC50 values of 12.10, 9.48, and 9.87 µM, respectively, without cytotoxicity.


Assuntos
Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacologia , Lignanas/análise , Lignanas/farmacologia , Lindera/química , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lignanas/isolamento & purificação , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Neoplasias/tratamento farmacológico , Óxido Nítrico/análise , Óxido Nítrico/imunologia , Extratos Vegetais/química
20.
J Agric Food Chem ; 62(31): 7746-52, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25020073

RESUMO

In the search for antitumor compounds from Korean natural resources, activity-guided fractionation and purification processes were used on seeds of morning glory (Pharbitis nil). Air-dried P. nil seeds were extracted with ethanol and separated into n-hexane, chloroform, ethyl acetate, and n-butanol. Four new lignans, pharbilignans A-D (1-4) were isolated from the most active ethyl acetate fraction of the ethanol extract. Their structures were characterized on the basis of spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance (NMR) techniques, high resolution mass spectrometry (HRMS), and circular dichroism (CD) spectroscopy. The cytotoxic activities of the isolates (1-4) were evaluated by determining their inhibitory effects on four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT15) using a sulforhodamine B (SRB) bioassay. Pharbilignan C (3) showed potent cytotoxicity against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines with IC50 values of 1.42, 0.16, 0.20, and 0.14 µM, respectively. On the basis of the expanded understanding that inflammation is a crucial cause in tumor progress, we also evaluated anti-inflammatory activity of the isolates (1-4). Pharbilignan C (3) strongly inhibited nitric oxide (NO) production in the lipopolysaccharide (LPS)-activated BV-2 microglia cell line with an IC50 value of 12.8 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ipomoea nil/química , Lignanas/farmacologia , Sementes/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Extratos Vegetais/química , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...