Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 15(1): 11, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658621

RESUMO

BACKGROUND: Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS: We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS: We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Metilação de DNA , Leucócitos Mononucleares , Aterosclerose/genética , Placa Aterosclerótica/genética , Epigênese Genética , Receptores de Ativinas Tipo I/genética , Receptor MT2 de Melatonina/genética
2.
Blood ; 115(5): 957-64, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19897586

RESUMO

The stromal vascular fraction (SVF) in adipose tissue contains a pool of various stem and progenitor cells, but the existence of hematopoietic stem and progenitor cells (HSPCs) in the SVF has not been seriously considered. We detected the presence of HSPCs in the SVF by phenotypically probing with Lin(-)Sca-1(+)c-kit(+) (LSK) and functionally confirming the presence using colony-forming cell assay and assessing the long-term multilineage reconstitution ability after SVF transplantation. The LSK population in the SVF was 0.004% plus or minus 0.001%, and 5 x 10(5) freshly isolated SVF cells gave rise to 13 plus or minus 4 multilineage colonies. In addition, 0.15% plus or minus 0.03% of SVF cells was home to bone marrow (BM), especially near vascular and endosteal regions, 24 hours after blood transplantation. SVF transplantation was capable of generating a long-term (> 16 weeks), but variable extent (2.1%-32.1%) multilineage reconstitution in primary recipients, which was subsequently transferred to the secondary recipients by BM transplantation. All HSPCs within the SVF originated from the BM. Furthermore, the granulocyte-colony-stimulating factor (G-CSF) mobilization of HSPCs from BM markedly elevated the number of phenotypic and functional HSPCs in the SVF, which induced a high efficiency long-term reconstitution in multilineage hematopoiesis in vivo. Our results provide compelling evidence that adipose tissue is a novel extramedullary tissue possessing phenotypic and functional HSPCs.


Assuntos
Tecido Adiposo/citologia , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Tecido Adiposo/metabolismo , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...