Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(26): 10126-10134, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966377

RESUMO

Metal-organic frameworks (MOFs) show remarkable potential in a broad array of applications given their physical and chemical versatility. Classical synthesis of MOFs is performed using solution chemistry at elevated temperatures to achieve reversible metal-ligand bond formation. These harsh conditions may not be suitable for chemical species sensitive to high temperature or prone to deleterious reactions with solvents. For instance, Pd(ii) is susceptible to reduction under solvothermal conditions and is not a common metal node of MOFs. We report a generic and facile mechanochemical strategy that directly incorporates a series of Pd(ii)-based heterobimetallic clusters into MOFs as metal nodes without Pd(ii) being reduced to Pd(0). Mechanochemistry features advantages of short reaction time, minimum solvent, high reaction yield, and high degree of synthetic control. Catalytic performances of lattice-confined heterobimetallic sites are examined for nitrene transfer reactions and we demonstrate that the chemoselectivity for allylic amination versus olefin aziridination is readily tuned by the identity of the first-row metal ion in Pd(ii)-based heterobimetallic clusters.

2.
ACS Omega ; 9(25): 27204-27213, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947831

RESUMO

The densities of eutectic (LiF)2-BeF2 and mixtures of this salt (FLiBe) with LaF3 were measured by dilatometry and by neutron attenuation from 673 K to 1,073 K. Because LaF3 has a limited solubility in FLiBe, it was necessary to determine the amount of LaF3 in solution before the density could be determined. The FLiBe density determination was favorably benchmarked against the literature data. A simple comparison was not available for the LaF3-FLiBe mixtures, so extrapolation of published data was necessary based on analysis using the Molten Salt Thermal Properties Database-Thermochemistry, or MSTDB-TC, developed by the US Department of Energy. Solubilities for LaF3 in FLiBe ranged from 1 to 4 mol % over 673 to 1,073 K. The salt system was heated and cooled over 24 h to evaluate potential changes in composition and hysteresis during the measurement. Changes in the meniscus were observed, and these were included in the correction for density determinations. Salt surface tension may have led to supersaturation of LaF3 in the salt because the solubility curve was nonlinear with respect to the inverse temperature, as would be expected for an ideal system. Surface tension measurements are currently underway to test this hypothesis.

3.
ACS Nano ; 18(26): 16577-16588, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885179

RESUMO

Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure-property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs' surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.

4.
ACS Cent Sci ; 8(8): 1081-1090, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36032771

RESUMO

Introducing transition-metal components to ceria (CeO2) is important to tailor the surface redox properties for a broad scope of applications. The emergence of high-entropy oxides (HEOs) has brought transformative opportunities for oxygen defect engineering in ceria yet has been hindered by the difficulty in controllably introducing transition metals to the bulk lattice of ceria. Here, we report the fabrication of ceria-based nanocrystals with surface-confined atomic HEO layers for enhanced catalysis. The increased covalency of the transition-metal-oxygen bonds at the HEO-CeO2 interface promotes the formation of surface oxygen vacancies, enabling efficient oxygen activation and replenishment for enhanced CO oxidation capabilities. Understanding the structural heterogeneity involving bulk and surface oxygen defects in nanostructured HEOs provides useful insights into rational design of atomically precise metal oxides, whose increased compositional and structural complexities give rise to expanded functionalities.

5.
Nat Commun ; 13(1): 3253, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668115

RESUMO

Precise control of charge transfer between catalyst nanoparticles and supports presents a unique opportunity to enhance the stability, activity, and selectivity of heterogeneous catalysts. While charge transfer is tunable using the atomic structure and chemistry of the catalyst-support interface, direct experimental evidence is missing for three-dimensional catalyst nanoparticles, primarily due to the lack of a high-resolution method that can probe and correlate both the charge distribution and atomic structure of catalyst/support interfaces in these structures. We demonstrate a robust scanning transmission electron microscopy (STEM) method that simultaneously visualizes the atomic-scale structure and sub-nanometer-scale charge distribution in heterogeneous catalysts using a model Au-catalyst/SrTiO3-support system. Using this method, we further reveal the atomic-scale mechanisms responsible for the highly active perimeter sites and demonstrate that the charge transfer behavior can be readily controlled using post-synthesis treatments. This methodology provides a blueprint for better understanding the role of charge transfer in catalyst stability and performance and facilitates the future development of highly active advanced catalysts.

6.
J Am Chem Soc ; 144(24): 10688-10693, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35588497

RESUMO

The construction of heterogeneous frustrated Lewis pairs (FLPs) with performance comparable to or surpassing the homogeneous counterparts in H2 activation is a long-standing challenge. Herein, sterically hindered Lewis acid ("B" center) and Lewis base ("N" center) sites were anchored within the rigid lattice of highly crystalline hexagonal boron nitride (h-BN) scaffolds. The active sites were created via precision defect regulation during the molten-salt-involved (NaNH2 and NaBH4) h-BN construction procedure. The as-afforded h-BN scaffolds achieved highly efficient H2/D2 activation and dissociation under ambient pressure via FLP-like behavior, and attractive catalytic efficiency in hydrogenation reactions surpassing the current heterogeneous analogues.

7.
Adv Sci (Weinh) ; 9(8): e2104749, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35048561

RESUMO

Due to tunable redox properties and cost-effectiveness, copper-ceria (Cu-CeO2 ) materials have been investigated for a wide scope of catalytic reactions. However, accurately identifying and rationally tuning the local structures in Cu-CeO2 have remained challenging, especially for nanomaterials with inherent structural complexities involving surfaces, interfaces, and defects. Here, a nanocrystal-based atom-trapping strategy to access atomically precise Cu-CeO2 nanostructures for enhanced catalysis is reported. Driven by the interfacial interactions between the presynthesized Cu and CeO2 nanocrystals, Cu atoms migrate and redisperse onto the CeO2 surface via a solid-solid route. This interfacial restructuring behavior facilitates tuning of the copper dispersion and the associated creation of surface oxygen defects on CeO2 , which gives rise to enhanced activities and stabilities catalyzing water-gas shift reaction. Combining soft and solid-state chemistry of colloidal nanocrystals provide a well-defined platform to understand, elucidate, and harness metal-support interactions. The dynamic behavior of the supported metal species can be further exploited to realize exquisite control and rational design of multicomponent nanocatalysts.

8.
ACS Appl Mater Interfaces ; 12(44): 49680-49693, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090761

RESUMO

Iodine radioisotopes released during nuclear fuel reprocessing must be removed from the off-gas stream before discharge. One promising material for iodine capture is reduced silver mordenite (Ag0Z). Nevertheless, the adsorbent's capacity will degrade, or age, over time when the material is exposed to other off-gas constituents. Though the overall impact of aging is known, the underlying physical and chemical processes are not. To examine these processes, Ag0Z samples were prepared and aged in 2% NO2 in dry air and in 1% NO in N2 gas streams at 150 °C for up to six months. Aged samples were then characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray absorption spectroscopy. These techniques show that aging involves two overarching processes: (i) oxidation of the silver nanoparticles present in Ag0Z and (ii) migration of oxidized silver into the mordenite's inner network. Silver on the nanoparticle's surface is oxidized through adsorption of O2, NO, and NO2. Raman spectroscopy and X-ray absorption spectroscopy indicate that nitrates are the primary products of this adsorption. Most of these nitrates migrate into the interior of the mordenite and exchange at framework binding sites, returning silver to its unreduced state (AgZ). The remaining nitrates exist at a persistent concentration without aggregating into bulk-phase AgNO3. X-ray absorption spectroscopy results further indicate that iodine adsorption occurs on not just Ag0Z but also on AgZ and a portion of the nitrates in the system. AgZ adsorbs a sizable quantity of iodine early in the aging process, but its capacity drops rapidly over time. For well-aged samples, nitrates are responsible for up to 95% of mordenite's iodine capacity. These results have enhanced our understanding of the aging process in silver mordenite and are expected to guide the development of superior adsorbents for the capture of radioactive iodine from reprocessing off-gas.

9.
Nat Commun ; 11(1): 3042, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546680

RESUMO

Engineering strong metal-support interactions (SMSI) is an effective strategy for tuning structures and performances of supported metal catalysts but induces poor exposure of active sites. Here, we demonstrate a strong metal-support interaction via a reverse route (SMSIR) by starting from the final morphology of SMSI (fully-encapsulated core-shell structure) to obtain the intermediate state with desirable exposure of metal sites. Using core-shell nanoparticles (NPs) as a building block, the Pd-FeOx NPs are transformed into a porous yolk-shell structure along with the formation of SMSIR upon treatment under a reductive atmosphere. The final structure, denoted as Pd-Fe3O4-H, exhibits excellent catalytic performance in semi-hydrogenation of acetylene with 100% conversion and 85.1% selectivity to ethylene at 80 °C. Detailed electron microscopic and spectroscopic experiments coupled with computational modeling demonstrate that the compelling performance stems from the SMSIR, favoring the formation of surface hydrogen on Pd instead of hydride.

10.
J Am Chem Soc ; 142(16): 7655-7667, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32248688

RESUMO

Recently, there have been renewed interests in exploring new catalysts for ammonia synthesis under mild conditions. Electride-based catalysts are among the emerging ones. Ruthenium particles supported on an electride composed of a mixture of calcium and aluminum oxides (C12A7) have attracted great attention for ammonia synthesis due to their facile ability in activating N2 under ambient pressure. However, the exact nature of the reactive hydrogen species and the role of electride support still remain elusive for this catalytic system. In this work, we report for the first time that the surface-adsorbed hydrogen, rather than the hydride encaged in the C12A7 electride, plays a major role in ammonia synthesis over the Ru/C12A7 electride catalyst with the aid of in situ neutron scattering techniques. Combining in situ neutron diffraction, inelastic neutron spectroscopy, density functional theory (DFT) calculation, and temperature-programmed reactions, the results provide direct evidence for not only the presence of encaged hydrides during ammonia synthesis but also the strong thermal and chemical stability of the hydride species in the Ru/C12A7 electride. Steady state isotopic transient kinetic analysis (SSITKA) of ammonia synthesis showed that the coverage of reactive intermediates increased significantly when the Ru particles were promoted by the electride form (coverage up to 84%) of the C12A7 support rather than the oxide form (coverage up to 15%). Such a drastic change in the intermediate coverage on the Ru surface is attributed to the positive role of electride support where the H2 poisoning effect is absent during ammonia synthesis over Ru. The finding of this work has significant implications for understanding catalysis by electride-based materials for ammonia synthesis and hydrogenation reactions in general.

11.
Dalton Trans ; 47(43): 15424-15438, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30328440

RESUMO

The extractability and coordination chemistry for lanthanides in a binary extraction system containing aerosol OT (AOT) and a phosphine oxide (CMPO) have been investigated by means of UV-Vis and X-ray absorption fine structure (XAFS) techniques over a range of extractant concentrations. In addition to the Fourier transform EXAFS analysis, the application of wavelet transform (WT) to the Fourier transform was adapted to the Ho L-III edge to provide a better contrast between the heavier and lighter backscattering atoms at higher coordination shells in the mixed extractant system. Through the variation of the ratio of AOT and CMPO and the acid concentration of the aqueous phase, a synergistic effect appeared at a 1 : 1 ratio of AOT and CMPO using a moderate acid concentration (0.5 M HNO3). It was also found that CMPO itself is directly coordinated with the metal ions by forming the bond with P[double bond, length as m-dash]O and C[double bond, length as m-dash]O, while AOT extracts the lanthanide as a hydrated form through reverse micelle formation. However, the complex of CMPO (C[double bond, length as m-dash]O-M and P[double bond, length as m-dash]O-M) to metal becomes weaker as it is mixed with AOT. Our results indicate that complexation from the CMPO is aiding the control of water extraction through reverse micelles from AOT, which results in the cooperative effect of certain mixtures of AOT-CMPO. The information from this coordination environment offers insight into the role of reverse micelle formation in a mixed-extractant solvent extraction system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA