Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(26): 23799-23805, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426240

RESUMO

Li-S batteries have received significant attention owing to their high energy density, nontoxicity, low cost, and eco-friendliness. However, the dissolution of lithium polysulfide during the charge/discharge process and its extremely low electron conductivity hinder practical applications of Li-S batteries. Herein, we report a sulfur-infiltrated carbon cathode material with a spherical morphology and conductive polymer coating. The material was produced via a facile polymerization process that forms a robust nanostructured layer and physically prevents the dissolution of lithium polysulfide. The thin double layer composed of carbon and poly(3,4-ethylenedioxythiophene) provides sufficient space for sulfur storage and effectively prevents the elution of polysulfide during continuous cycling, thereby playing an essential role in increasing the sulfur utilization rate and significantly improving the electrochemical performance of the battery. Sulfur-infiltrated hollow carbon spheres with a conductive polymer layer demonstrate a stable cycle life and reduced internal resistance. The as-fabricated battery demonstrated an excellent capacity of 970 mA h g-1 at 0.5 C and a stable cycle performance, exhibiting ∼78% of the initial discharge capacity after 50 cycles. This study provides a promising approach to significantly improve the electrochemical performance of Li-S batteries and render them as valuable and safe energy devices for large-scale energy storage systems.

2.
Nanotechnology ; 34(45)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37336197

RESUMO

For stable lithium deposition without dendrites, three-dimensional (3D) porous structure has been intensively investigated. Here, we report the use of carbon-doped graphitic carbon nitride (C-doped g-C3N4) microspheres as a 3D host for lithium to suppress dendrite formation, which is crucial for stable lithium deposition. The C-doped g-C3N4microspheres have a high surface area and porosity, allowing for efficient lithium accommodation with high accessibility. The carbon-doping of the g-C3N4microspheres confers lithiophilic properties, which facilitate the regulation of Li+flux and dense filling of cavities with nucleated lithium, thereby preventing volume expansion and promoting dendrite-free Li deposition. The electrochemical performance was improved with cyclic stability and high Coulombic efficiency over 260 cycles at 1.0 mA cm-2for 1.0 mAh cm-2, and even over 70 cycles at 5.0 mA cm-2for 3.0 mAh cm-2. The use of C-doped g-C3N4microspheres as a 3D Li host shows promising results for stable lithium deposition without dendrite formation.

3.
Nano Lett ; 22(2): 761-767, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029396

RESUMO

Electric vehicle manufacturers worldwide are demanding superior lithium-ion batteries, with high energy and power densities, compared to gasoline engines. Although conversion-type metal oxides are promising candidates for high-capacity anodes, low initial Coulombic efficiency (ICE) and poor capacity retention have hindered research on their applications. In this study, the ICE of conversion-type MoO3 is investigated, with a particular focus on the delithiation failure. A computational modeling predicts the concentration gradient of Li+ in MoO3 particles. The highly delithiated outer region of the particle forms a layer with low electronic conductivity, which impedes further delithiation. A comparative study using various sizes of MoO3 particles demonstrated that the electrode failure during delithiation is governed by the concentration gradient and the subsequent formation of a resistive shell. The proposed failure mechanism provides critical guidance for the development of conversion-type anode materials with improved electrochemical reversibility.

4.
ACS Appl Mater Interfaces ; 13(51): 60978-60986, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918912

RESUMO

Despite the extremely high energy density of the lithium metal, dendritic lithium growth caused by nonuniform lithium deposition can result in low Coulombic efficiency and safety hazards, thereby inhibiting its practical applications. Here, we report a new strategy for adopting a nanopatterned gold (Au) seed on a copper current collector for uniform lithium deposition. We find that Au nanopatterns enhance lithium metal battery performance, which is strongly affected by the feature dimensions of Au nanopatterns (diameter and height). Ex situ scanning electron microscopy images confirm that this can be attributed to the perfectly selective lithium nucleation and uniform growth resulting from the spatial confinement effect. The spatial arrangement of Au dot seeds homogenizes the Li+ flux and electric field, and the size-controlled Au seeds prevent both seed-/substrate-induced agglomeration and interseed-induced lithium growth, leading to uniform lithium deposition. This dendrite-free lithium deposition results in the improvement of electrochemical performance, and the system showed cyclic stability over 300 cycles at 0.5 mA cm-2 and 200 cycles at 1.0 mA cm-2 (1 mA h cm-2) and a high rate capability. This study provides in-depth insights into the more complicated and diverse seed geometry control of seed materials for the development of high-performance lithium metal batteries.

5.
Nanomaterials (Basel) ; 11(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835817

RESUMO

Due to the demand to upgrade from lithium-ion batteries (LIB), sodium-ion batteries (SIB) have been paid considerable attention for their high-energy, cost-effective, and sustainable battery system. Red phosphorus is one of the most promising anode candidates for SIBs, with a high theoretical specific capacity of 2596 mAh g-1 and in the discharge potential range of 0.01-0.8 V; however, it suffers from a low electrical conductivity, a substantial expansion of volume (~300%), and sluggish electron/ion kinetics. Herein, we have designed a well-defined electrode, which consists of red phosphorus, nanowire arrays encapsulated in the vertically aligned carbon nanotubes (P@C NWs), which were fabricated via a two-step, anodized-aluminum oxide template. The designed anode achieved a high specific capacity of 2250 mAh g-1 (87% of the theoretical capacity), and a stepwise analysis of the reaction behavior between sodium and red phosphorus was demonstrated, both of which have not been navigated in previous studies. We believe that our rational design of the red phosphorus electrode elicited the specific reaction mechanism revealed by the charge-discharge profiles, rendered excellent electrical conductivity, and accommodated volume expansion through the effective nano-architecture, thereby suggesting an efficient structure for the phosphorus anode to advance in the future.

6.
RSC Adv ; 10(45): 26756-26764, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515763

RESUMO

The Zr solvent solution method, which allows primary and secondary particles of LiNi0.90Co0.05Mn0.05O2 (NCM) to be uniformly doped with Zr and simultaneously to be coated with an Li2ZrO3 layer, is introduced in this paper. For Zr doped NCM, which is formed using the Zr solvent solution method (L-NCM), most of the pinholes inside the precursor disappear owing to the diffusion of the Zr dopant solution compared with Zr-doped NCM, which is formed using the dry solid mixing method from the (Ni0.90Co0.05Mn0.05)(OH)2 precursor and the Zr source (S-NCM), and Li2ZrO3 is formed at the pinhole sites. The mechanical strength of the powder is enhanced by the removal of the pinholes by the formation of Li2ZrO3 resulting from diffusion of the solvent during the mixing process, which provides protection from cracking. The coating layer functions as a protective layer during the washing process for removing the residual Li. The electrochemical performance is improved by the synergetic effects of suitable coatings and the enhanced structural stability. The capacity-retentions for 2032 coin cells are 86.08%, 92.12%, and 96.85% at the 50th cycle for pristine NCM, S-NCM, and L-NCM, respectively. The superiority of the liquid mixing method is demonstrated for 18 650 full cells. In the 300th cycle in the voltage range of 2.8-4.35 V, the capacity-retentions for S-NCM and L-NCM are 77.72% and 81.95%, respectively.

7.
Chemphyschem ; 19(1): 116-122, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28906585

RESUMO

The thermal stability of lithium-rich layered oxide with the composition Li(Li1/6 Ni1/6 Co1/6 Mn1/2 )O2-x Fx (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed.

8.
J Fungi (Basel) ; 3(2)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29371548

RESUMO

Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed.

9.
J Nanosci Nanotechnol ; 14(10): 8056-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942922

RESUMO

The influence of propionic acid on BaTiO3 particles prepared via hydorthermal method is discussed. The amount of the acid is varied in the experimental processes to enhance understanding of the roles of the propionic acid. Smaller sized BaTiO3 powders with more uniform particle sizes can be achieved at 200 degrees C after 24 h using propionic acid. The acid is found to be excellent for size reduction and narrow size distribution. Reitveld refinement of the XRD patterns revealed that the synthesize BaTiO3 nanopowders have tetragonal asymmetry dominant structures. The "micro-capsules" caused by the acid are observed using high temperature in-situ TEM analysis. High vacuum condition of the TEM is attributed to the notable differences. It can thus be posited that the reduction of particle size and the narrow size distribution result from the "micro-capsule" effects of propionic acid. Moreover, the "capsules" are attributed to a decrease of intragranular pores in the BaTiO3 particles.

10.
Adv Mater ; 25(45): 6546, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24302601

RESUMO

On page 6547 Do Kyung Kim, Jang Wook Choi and co-workers describe a highly aligned and carbon-encapsulated sulfur cathode synthesized with an AAO template that exhibits a high and long cycle life, and the best rate capability based on the complete encapsulation of sulfur (physical) and implementation of the monoclinic sulfur phase (chemical).

11.
Adv Mater ; 25(45): 6547-53, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24018843

RESUMO

Monoclinic S8 , an uncommon allotrope of sulfur at room temperature, can be formed when common orthorhombic S8 is heat-treated under enclosed environments in nanometer dimensions. Monoclinic S8 prevents the formation of soluble polysulfides during battery operation, resulting in unprecedented cycling performance over 1000 cycles under the highest sulfur content to date.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Enxofre/química , Óxido de Alumínio/química , Eletrodos , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...