Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 11(1): 554, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992693

RESUMO

Agriculture (e.g., rice paddies) has been considered one of the main emission sources responsible for the sudden rise of atmospheric methane concentration (XCH4) since 2007, but remains debated. Here we use satellite-based rice paddy and XCH4 data to investigate the spatial-temporal relationships between rice paddy area, rice plant growth, and XCH4 in monsoon Asia, which accounts for ~87% of the global rice area. We find strong spatial consistencies between rice paddy area and XCH4 and seasonal consistencies between rice plant growth and XCH4. Our results also show a decreasing trend in rice paddy area in monsoon Asia since 2007, which suggests that the change in rice paddy area could not be one of the major drivers for the renewed XCH4 growth, thus other sources and sinks should be further investigated. Our findings highlight the importance of satellite-based paddy rice datasets in understanding the spatial-temporal dynamics of XCH4 in monsoon Asia.

3.
Proc Natl Acad Sci U S A ; 116(44): 22393-22398, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611384

RESUMO

Photosynthesis of the Amazon rainforest plays an important role in the regional and global carbon cycles, but, despite considerable in situ and space-based observations, it has been intensely debated whether there is a dry-season increase in greenness and photosynthesis of the moist tropical Amazonian forests. Solar-induced chlorophyll fluorescence (SIF), which is emitted by chlorophyll, has a strong positive linear relationship with photosynthesis at the canopy scale. Recent advancements have allowed us to observe SIF globally with Earth observation satellites. Here we show that forest SIF did not decrease in the early dry season and increased substantially in the late dry season and early part of wet season, using SIF data from the Tropospheric Monitoring Instrument (TROPOMI), which has unprecedented spatial resolution and near-daily global coverage. Using in situ CO2 eddy flux data, we also show that cloud cover rarely affects photosynthesis at TROPOMI's midday overpass, a time when the forest canopy is most often light-saturated. The observed dry-season increases of forest SIF are not strongly affected by sun-sensor geometry, which was attributed as creating a pseudo dry-season green-up in the surface reflectance data. Our results provide strong evidence that greenness, SIF, and photosynthesis of the tropical Amazonian forest increase during the dry season.


Assuntos
Clorofila/química , Floresta Úmida , Imagens de Satélites/métodos , Estações do Ano , Luz Solar , Absorção de Radiação , Brasil , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Fluorescência , Fotossíntese , Imagens de Satélites/normas
4.
Proc Natl Acad Sci U S A ; 115(31): 7860-7868, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29987011

RESUMO

The impact of human emissions of carbon dioxide and methane on climate is an accepted central concern for current society. It is increasingly evident that atmospheric concentrations of carbon dioxide and methane are not simply a function of emissions but that there are myriad feedbacks forced by changes in climate that affect atmospheric concentrations. If these feedbacks change with changing climate, which is likely, then the effect of the human enterprise on climate will change. Quantifying, understanding, and articulating the feedbacks within the carbon-climate system at the process level are crucial if we are to employ Earth system models to inform effective mitigation regimes that would lead to a stable climate. Recent advances using space-based, more highly resolved measurements of carbon exchange and its component processes-photosynthesis, respiration, and biomass burning-suggest that remote sensing can add key spatial and process resolution to the existing in situ systems needed to provide enhanced understanding and advancements in Earth system models. Information about emissions and feedbacks from a long-term carbon-climate observing system is essential to better stewardship of the planet.

5.
Nat Commun ; 9(1): 2171, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867087

RESUMO

Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.

6.
Sci Rep ; 7(1): 14963, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097731

RESUMO

The gross primary production (GPP) of vegetation in urban areas plays an important role in the study of urban ecology. It is difficult however, to accurately estimate GPP in urban areas, mostly due to the complexity of impervious land surfaces, buildings, vegetation, and management. Recently, we used the Vegetation Photosynthesis Model (VPM), climate data, and satellite images to estimate the GPP of terrestrial ecosystems including urban areas. Here, we report VPM-based GPP (GPPvpm) estimates for the world's ten most populous megacities during 2000-2014. The seasonal dynamics of GPPvpm during 2007-2014 in the ten megacities track well that of the solar-induced chlorophyll fluorescence (SIF) data from GOME-2 at 0.5° × 0.5° resolution. Annual GPPvpm during 2000-2014 also shows substantial variation among the ten megacities, and year-to-year trends show increases, no change, and decreases. Urban expansion and vegetation collectively impact GPP variations in these megacities. The results of this study demonstrate the potential of a satellite-based vegetation photosynthesis model for diagnostic studies of GPP and the terrestrial carbon cycle in urban areas.


Assuntos
Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo , Ciclo do Carbono , Ecossistema , Fluorescência , Modelos Biológicos , Desenvolvimento Vegetal , Luz Solar , Urbanização
7.
Sci Total Environ ; 579: 82-92, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866742

RESUMO

Due to rapid population growth and urbanization, paddy rice agriculture is experiencing substantial changes in the spatiotemporal pattern of planting areas in the two most populous countries-China and India-where food security is always the primary concern. However, there is no spatially explicit and continuous rice-planting information in either country. This knowledge gap clearly hinders our ability to understand the effects of spatial paddy rice area dynamics on the environment, such as food and water security, climate change, and zoonotic infectious disease transmission. To resolve this problem, we first generated annual maps of paddy rice planting areas for both countries from 2000 to 2015, which are derived from time series Moderate Resolution Imaging Spectroradiometer (MODIS) data and the phenology- and pixel-based rice mapping platform (RICE-MODIS), and analyzed the spatiotemporal pattern of paddy rice dynamics in the two countries. We found that China experienced a general decrease in paddy rice planting area with a rate of 0.72 million (m) ha/yr from 2000 to 2015, while a significant increase at a rate of 0.27mha/yr for the same time period happened in India. The spatial pattern of paddy rice agriculture in China shifted northeastward significantly, due to simultaneous expansions in paddy rice planting areas in northeastern China and contractions in southern China. India showed an expansion of paddy rice areas across the entire country, particularly in the northwestern region of the Indo-Gangetic Plain located in north India and the central and south plateau of India. In general, there has been a northwesterly shift in the spatial pattern of paddy rice agriculture in India. These changes in the spatiotemporal patterns of paddy rice planting area have raised new concerns on how the shift may affect national food security and environmental issues relevant to water, climate, and biodiversity.


Assuntos
Agricultura/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental , Oryza/crescimento & desenvolvimento , Imagens de Satélites , China , Mudança Climática , Índia
8.
Remote Sens Environ ; 185: 142-154, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28025586

RESUMO

Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields in NE Asia, which will contribute to food security assessment, water resource management, estimation of greenhouse gas emissions, and disease control.

9.
Sci Rep ; 6: 20880, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864143

RESUMO

Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.


Assuntos
Algoritmos , Conservação dos Recursos Naturais/estatística & dados numéricos , Monitoramento Ambiental/métodos , Imagens de Satélites/métodos , Ásia , Biodiversidade , Biomassa , Ciclo do Carbono , Monitoramento Ambiental/instrumentação , Florestas , Sistemas de Informação Geográfica , Humanos , Imagens de Satélites/instrumentação , Estações do Ano , Clima Tropical
10.
PLoS One ; 9(1): e85801, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465714

RESUMO

Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6) km(2) (GlobCover) to 2.69×10(6) km(2) (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Florestas , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Sudeste Asiático , Biomassa , Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Sistemas de Informação Geográfica/estatística & dados numéricos , Geografia , Modelos Teóricos , Radar , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Reprodutibilidade dos Testes , Clima Tropical
11.
Appl Opt ; 52(29): 7062-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24217721

RESUMO

The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 µm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the τd measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the τd measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10 pm, respectively, from the CO(2) line center at 1571.112 nm. The CO(2) column bias errors introduced by the thin clouds are ≤0.1% for cloud optical depth ≤0.4, but they could reach ∼0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO(2) column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...