Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 222503, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101393

RESUMO

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

2.
Eur Phys J A Hadron Nucl ; 59(7): 169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502124

RESUMO

In a measurement of isomeric yield-ratios in fission, the Phase-Imaging Ion-Cyclotron-Resonance technique, which projects the radial motions of ions in the Penning trap (JYFLTRAP) onto a position-sensitive micro-channel plate detector, has been applied. To obtain the yield ratio, that is the relative population of two states of an isomer pair, a novel analysis procedure has been developed to determine the number of detected ions in each state, as well as corrections for the detector efficiency and decay losses. In order to determine the population of the states in cases where their mass difference is too small to reach full separation, a Bayesian Gaussian Mixture model was implemented. The position-dependent efficiency of the micro-channel plate detector was calibrated by mapping it with 133Cs+ ions, and a Gaussian Process was trained with the position data to construct an efficiency function that could be used to correct the recorded distributions. The obtained numbers of counts of excited and ground-state ions were used to derive the isomeric yield ratio, taking into account decay losses as well as feeding from precursors.

3.
Sci Rep ; 13(1): 4783, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959230

RESUMO

High-precision hyperfine structure measurements were performed on stable, singly-charged [Formula: see text]Co ions at the IGISOL facility in Jyväskylä, Finland using the collinear laser spectroscopy technique. A newly installed light collection setup enabled the study of transitions in the 230 nm wavelength range from low-lying states below 6000 cm[Formula: see text]. We report a 100-fold improvement on the precision of the hyperfine A parameters, and furthermore present newly measured hyperfine B paramaters.

4.
Phys Rev Lett ; 128(15): 152501, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499902

RESUMO

The impact of nuclear deformation can been seen in the systematics of nuclear charge radii, with radii generally expanding with increasing deformation. In this Letter, we present a detailed analysis of the precise relationship between nuclear quadrupole deformation and the nuclear size. Our approach combines the first measurements of the changes in the mean-square charge radii of well-deformed palladium isotopes between A=98 and A=118 with nuclear density functional calculations using Fayans functionals, specifically Fy(std) and Fy(Δr,HFB), and the UNEDF2 functional. The changes in mean-square charge radii are extracted from collinear laser spectroscopy measurements on the 4d^{9}5s ^{3}D_{3}→4d^{9}5p ^{3}P_{2} atomic transition. The analysis of the Fayans functional calculations reveals a clear link between a good reproduction of the charge radii for the neutron-rich Pd isotopes and the overestimated odd-even staggering: Both aspects can be attributed to the strength of the pairing correlations in the particular functional which we employ.

5.
Nat Commun ; 12(1): 4596, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321487

RESUMO

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development.

6.
Phys Rev Lett ; 127(27): 272301, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061421

RESUMO

The ground state to ground state electron-capture Q value of ^{159}Dy (3/2^{-}) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent ^{159}Dy and the decay daughter ^{159}Tb ions using the novel phase-imaging ion-cyclotron resonance technique. The Q values for allowed Gamow-Teller transition to 5/2^{-} and the third-forbidden unique transition to 11/2^{+} state with excitation energies of 363.5449(14) keV and 362.050(40) keV in ^{159}Tb were determined to be 1.18(19) keV and 2.68(19) keV, respectively. The high-precision Q value of transition 3/2^{-}→5/2^{-} from this work, revealing itself as the lowest electron-capture Q value, is used to unambiguously characterize all the possible lines that are present in its electron-capture spectrum. We performed atomic many-body calculations for both transitions to determine electron-capture probabilities from various atomic orbitals and found an order of magnitude enhancement in the event rates near the end point of energy spectrum in the transition to the 5/2^{-} nuclear excited state, which can become very interesting once the experimental challenges of identifying decays into excited states are overcome. The transition to the 11/2^{+} state is strongly suppressed and found unsuitable for measuring the neutrino mass. These results show that the electron-capture in the ^{159}Dy atom, going to the 5/2^{-} state of the ^{159}Tb nucleus, is a new candidate that may open the way to determine the electron-neutrino mass in the sub-eV region by studying electron-capture. Further experimental feasibility studies, including coincidence measurements with realistic detectors, will be of great interest.

7.
Phys Rev Lett ; 124(22): 222503, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567932

RESUMO

The ground-state-to-ground-state ß-decay Q value of ^{135}Cs(7/2^{+})→^{135}Ba(3/2^{+}) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between ^{135}Cs(7/2^{+}) and ^{135}Ba(3/2^{+}). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique ß^{-}-decay transition ^{135}Cs(7/2^{+})→^{135}Ba(11/2^{-}) is a candidate for antineutrino mass measurements with an ultralow Q value of 0.44(31) keV. This Q value is almost an order of magnitude smaller than those of nuclides presently used in running or planned direct (anti)neutrino mass experiment.

9.
Phys Rev Lett ; 120(26): 262701, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004755

RESUMO

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S_{2n} and neutron pairing energy metrics D_{n}. The data do not support the existence of a subshell closure at N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated r-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar r-process abundances are observed.

10.
Nat Commun ; 8: 14520, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224987

RESUMO

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

11.
Phys Rev Lett ; 116(7): 072501, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943530

RESUMO

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double ß decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single ß decay to ^{96}Mo, which are Q_{ß}(^{96}Zr)=163.96(13), Q_{ßß}(^{96}Zr)=3356.097(86), and Q_{ß}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single ß-decay Q value, which has never been determined directly. The single ß decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ßß decay, and its observation can provide one of the most direct tests of the neutrinoless ßß-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single ß-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single ß-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}.

12.
Rev Sci Instrum ; 86(12): 123501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724021

RESUMO

An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

13.
Appl Radiat Isot ; 71(1): 34-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085548

RESUMO

Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.

14.
Phys Rev Lett ; 109(3): 032501, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861839

RESUMO

Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models.

15.
Phys Rev Lett ; 104(25): 252502, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867369

RESUMO

Collinear laser spectroscopy was performed on Ga (Z=31) isotopes at ISOLDE, CERN. A gas-filled linear Paul trap (ISCOOL) was used to extend measurements towards very neutron-rich isotopes (N=36-50). A ground state (g.s.) spin I=1/2 is measured for 73Ga, being near degenerate with a 3/2{-} isomer (75 eV≲E{ex}≲1 keV). The 79Ga g.s., with I=3/2, is dominated by protons in the πf{5/2} orbital and in 81Ga the 5/2{-} level becomes the g.s. The data are compared to shell-model calculations in the f{5/2}pg{9/2} model space, calling for further theoretical developments and new experiments.

16.
Appl Radiat Isot ; 68(3): 450-3, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20044263

RESUMO

A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, (133m)Xe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors.

17.
Phys Rev Lett ; 105(20): 202501, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231223

RESUMO

The ß feeding probability of (102,104,105,106,107)Tc, 105Mo, and 101Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the γ component of the decay heat for 239Pu in the 4-3000 s range.

18.
Phys Rev Lett ; 102(22): 222501, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658859

RESUMO

A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for ;{90,90 m,91,91 m,92,93,99,101,103}Nb to cover the region of the N=50 shell closure and N approximately 60 sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of beta softness observed before and after N=60.

19.
Phys Rev Lett ; 102(25): 252501, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659070

RESUMO

The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.

20.
Phys Rev Lett ; 103(25): 252501, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366251

RESUMO

The superallowed beta-decay Q(EC) values of (34)Cl and (38)K(m) have been measured with an online Penning trap to be 5491.662(47) keV and 6044.223(41) keV, respectively. The new values are more precise than the previous high-precision reaction-based values but are consistent with them and establish that there are no significant systematic differences between the two types of measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...