Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(25): 3065-3077, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36888932

RESUMO

Mitochondrial damage-associated molecular patterns (mtDAMPs) include proteins, lipids, metabolites, and DNA and have various context-specific immunoregulatory functions. Cell-free mitochondrial DNA (mtDNA) is recognized via pattern recognition receptors and is a potent activator of the innate immune system. Cell-free mtDNA is elevated in the circulation of trauma patients and patients with cancer; however, the functional consequences of elevated mtDNA are largely undefined. Multiple myeloma (MM) relies upon cellular interactions within the bone marrow (BM) microenvironment for survival and progression. Here, using in vivo models, we describe the role of MM cell-derived mtDAMPs in the protumoral BM microenvironment and the mechanism and functional consequence of mtDAMPs in myeloma disease progression. Initially, we identified elevated levels of mtDNA in the peripheral blood serum of patients with MM compared with those of healthy controls. Using the MM1S cells engrafted into nonobese diabetic severe combined immunodeficient gamma mice, we established that elevated mtDNA was derived from MM cells. We further show that BM macrophages sense and respond to mtDAMPs through the stimulator of interferon genes (STING) pathway, and inhibition of this pathway reduces MM tumor burden in the KaLwRij-5TGM1 mouse model. Moreover, we found that MM-derived mtDAMPs induced upregulation of chemokine signatures in BM macrophages, and inhibition of this signature resulted in egress of MM cells from the BM. Here, we demonstrate that malignant plasma cells release mtDNA, a form of mtDAMPs, into the myeloma BM microenvironment, which in turn activates macrophages via STING signaling. We establish the functional role of these mtDAMP-activated macrophages in promoting disease progression and retaining MM cells in the protumoral BM microenvironment.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/metabolismo , Plasmócitos/patologia , Macrófagos/metabolismo , DNA Mitocondrial/genética , Progressão da Doença , Microambiente Tumoral
2.
Blood Adv ; 7(2): 256-268, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35622970

RESUMO

Rapid and effective leukocyte response to infection is a fundamental function of the bone marrow (BM). However, with increasing age, this response becomes impaired, resulting in an increased burden of infectious diseases. Here, we investigate how aging changes the metabolism and function of hematopoietic progenitor cells (HPCs) and the impact of the BM niche on this phenotype. We found that, in response to lipopolysaccharide-induced stress, HPC mitochondrial function is impaired, and there is a failure to upregulate the TCA cycle in progenitor populations in aged animals compared with young animals. Furthermore, aged mesenchymal stromal cells (MSCs) of the BM niche, but not HPCs, exhibit a senescent phenotype, and selective depletion of senescent cells from the BM niche, as well as treatment with the senolytic drug ABT-263, improves mitochondrial function of HPCs when stressed with lipopolysaccharide. In summary, age-related HPC metabolic dysfunction occurs indirectly as a "bystander phenomenon" in the aging BM niche and can be restored by targeting senescent MSCs.


Assuntos
Medula Óssea , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea , Envelhecimento , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
3.
Br J Cancer ; 127(1): 69-78, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347324

RESUMO

INTRODUCTION: Progress in the knowledge of metabolic interactions between cancer and its microenvironment is ongoing and may lead to novel therapeutic approaches. Until recently, melanoma was considered a glycolytic tumour due to mutations in mitochondrial-DNA, however, these malignant cells can regain OXPHOS capacity via the transfer of mitochondrial-DNA, a process that supports their proliferation in-vitro and in-vivo. Here we study how melanoma cells acquire mitochondria and how this process is facilitated from the tumour microenvironment. METHODS: Primary melanoma cells, and MSCs derived from patients were obtained. Genes' expression and DNA quantification was analysed using Real-time PCR. MSC migration, melanoma proliferation and tumour volume, in a xenograft subcutaneous mouse model, were monitored through bioluminescent live animal imaging. RESULTS: Human melanoma cells attract bone marrow-derived stromal cells (MSCs) to the primary tumour site where they stimulate mitochondrial biogenesis in the MSCs through upregulation of PGC1a. Mitochondria are transferred to the melanoma cells via direct contact with the MSCs. Moreover, inhibition of MSC-derived PGC1a was able to prevent mitochondrial transfer and improve NSG melanoma mouse tumour burden. CONCLUSION: MSC mitochondrial biogenesis stimulated by melanoma cells is prerequisite for mitochondrial transfer and subsequent tumour growth, where targeting this pathway may provide an effective novel therapeutic approach in melanoma.


Assuntos
Melanoma , Células-Tronco Mesenquimais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Melanoma/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Microambiente Tumoral
4.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990402

RESUMO

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation, and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to and growth of solid tumors. Here, we investigated the role of macrophage LC3-associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages (BMMs) increased AML growth in vivo. We show that LAP is the predominate method of BMM phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to the accumulation of apoptotic cells (ACs) and apoptotic bodies (ABs), resulting in accelerated leukemia growth. Mechanistically, LAP of AML-derived ABs by BMMs resulted in stimulator of IFN genes (STING) pathway activation. We found that AML-derived mitochondrial damage-associated molecular patterns were processed by BMMs via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML-derived ABs showed that it was this mtDNA that was responsible for the induction of STING signaling in BMMs. Phenotypically, we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Medula Óssea/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Macrófagos/metabolismo , Fagocitose , Microambiente Tumoral
5.
Nat Commun ; 12(1): 7130, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880245

RESUMO

Acute infection is known to induce rapid expansion of hematopoietic stem cells (HSCs), but the mechanisms supporting this expansion remain incomplete. Using mouse models, we show that inducible CD36 is required for free fatty acid uptake by HSCs during acute infection, allowing the metabolic transition from glycolysis towards ß-oxidation. Mechanistically, high CD36 levels promote FFA uptake, which enables CPT1A to transport fatty acyl chains from the cytosol into the mitochondria. Without CD36-mediated FFA uptake, the HSCs are unable to enter the cell cycle, subsequently enhancing mortality in response to bacterial infection. These findings enhance our understanding of HSC metabolism in the bone marrow microenvironment, which supports the expansion of HSCs during pathogenic challenge.


Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/metabolismo , Antígenos CD36/genética , Ciclo Celular , Glicólise , Interações entre Hospedeiro e Microrganismos , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxirredução , Infecções por Salmonella , Salmonella typhimurium
6.
Adv Exp Med Biol ; 1329: 181-203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664240

RESUMO

The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.


Assuntos
Neoplasias Hematológicas , Leucemia , Medula Óssea/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Leucemia/metabolismo , Mitocôndrias , Microambiente Tumoral
7.
Biomark Res ; 9(1): 35, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985565

RESUMO

Acute myeloid leukemia (AML) remains an incurable malignancy despite recent advances in treatment. Recently a number of new therapies have emerged for the treatment of AML which target BCL-2 or the membrane receptor CD38. Here, we show that treatment with Venetoclax and Daratumumab combination resulted in a slower tumor progression and a reduced leukemia growth both in vitro and in vivo. These data provide evidence for clinical evaluation of Venetoclax and Daratumumab combination in the treatment of AML.

8.
Metabolites ; 12(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35050131

RESUMO

Cardiomyocytes rely on specialised metabolism to meet the high energy demand of the heart. During heart development, metabolism matures and shifts from the predominant utilisation of glycolysis and glutamine oxidation towards lactate and fatty acid oxidation. Iron deficiency (ID) leads to cellular metabolism perturbations. However, the exact alterations in substrate metabolism during ID are poorly defined. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), the present study investigated changes in major metabolic substrate utilisation in the context of ID or upon transferrin rescue. Typically, during hiPSC-CM differentiation, the greatest increase in total metabolic output and rate was seen in fatty acid metabolism. When ID was induced, hiPSC-CMs displayed increased reliance on glycolytic metabolism, and six TCA cycle, five amino acid, and four fatty acid substrates were significantly impaired. Transferrin rescue was able to improve TCA cycle substrate metabolism, but the amino acid and fatty acid metabolism remained perturbed. Replenishing iron stores partially reverses the adverse metabolic changes that occur during ID. Understanding the changes in metabolic substrate utilisation and their modification may provide potential for discovery of new biomarkers and therapeutic targets in cardiovascular diseases.

10.
Br J Cancer ; 124(1): 115-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33204029

RESUMO

The Warburg effect in tumour cells is associated with the upregulation of glycolysis to generate ATP, even under normoxic conditions and the presence of fully functioning mitochondria. However, scientific advances made over the past 15 years have reformed this perspective, demonstrating the importance of oxidative phosphorylation (OXPHOS) as well as glycolysis in malignant cells. The metabolic phenotypes in melanoma display heterogeneic dynamism (metabolic plasticity) between glycolysis and OXPHOS, conferring a survival advantage to adapt to harsh conditions and pathways of chemoresistance. Furthermore, the simultaneous upregulation of both OXPHOS and glycolysis (metabolic symbiosis) has been shown to be vital for melanoma progression. The tumour microenvironment (TME) has an essential supporting role in promoting progression, invasion and metastasis of melanoma. Mesenchymal stromal cells (MSCs) in the TME show a symbiotic relationship with melanoma, protecting tumour cells from apoptosis and conferring chemoresistance. With the significant role of OXPHOS in metabolic plasticity and symbiosis, our review outlines how mitochondrial transfer from MSCs to melanoma tumour cells plays a key role in melanoma progression and is the mechanism by which melanoma cells regain OXPHOS capacity even in the presence of mitochondrial mutations. The studies outlined in this review indicate that targeting mitochondrial trafficking is a potential novel therapeutic approach for this highly refractory disease.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral/fisiologia , Animais , Humanos , Melanoma Maligno Cutâneo
11.
Front Oncol ; 10: 230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161723

RESUMO

Senescence is the irreversible arrest of cell proliferation that has now been shown to play an important role in both health and disease. With increasing age senescent cells accumulate throughout the body, including the bone marrow and this has been associated with a number of age-related pathologies including malignancies. It has been shown that the senescence associated secretory phenotype (SASP) creates a pro-tumoural environment that supports proliferation and survival of malignant cells. Understanding the role of senescent cells in tumor development better may help us to identify new treatment targets to impair tumor survival and reduce treatment resistance. In this review, we will specifically discuss the role of senescence in the aging bone marrow (BM) microenvironment. Many BM disorders are age-related diseases and highly dependent on the BM microenvironment. Despite advances in drug development the prognosis particularly for older patients remains poor and new treatment approaches are needed to improve outcomes for patients. In this review, we will focus on the relationship of senescence and hematological malignancies, how senescence promotes cancer development and how malignant cells induce senescence.

12.
Proc Natl Acad Sci U S A ; 116(49): 24610-24619, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727843

RESUMO

Hematopoietic stem cells (HSCs) undergo rapid expansion in response to stress stimuli. Here we investigate the bioenergetic processes which facilitate the HSC expansion in response to infection. We find that infection by Gram-negative bacteria drives an increase in mitochondrial mass in mammalian HSCs, which results in a metabolic transition from glycolysis toward oxidative phosphorylation. The initial increase in mitochondrial mass occurs as a result of mitochondrial transfer from the bone marrow stromal cells (BMSCs) to HSCs through a reactive oxygen species (ROS)-dependent mechanism. Mechanistically, ROS-induced oxidative stress regulates the opening of connexin channels in a system mediated by phosphoinositide 3-kinase (PI3K) activation, which allows the mitochondria to transfer from BMSCs into HSCs. Moreover, mitochondria transfer from BMSCs into HSCs, in the response to bacterial infection, occurs before the HSCs activate their own transcriptional program for mitochondrial biogenesis. Our discovery demonstrates that mitochondrial transfer from the bone marrow microenvironment to HSCs is an early physiologic event in the mammalian response to acute bacterial infection and results in bioenergetic changes which underpin emergency granulopoiesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/patologia , Células Estromais/metabolismo , Animais , Células da Medula Óssea , Ativação Enzimática , Sangue Fetal , Glicólise , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos NOD , Camundongos Knockout , Infecções por Salmonella/metabolismo , Salmonella typhimurium , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...