Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142243, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759810

RESUMO

The decommissioning and normal functioning of nuclear facilities can result in the production and release of airborne particles in the environment. Aquatic biota are expected to be exposed to these particles considering that nuclear facilities are often located near water bodies. Aerosols, such as cement dust, can interact with radionuclides as well as with heavy metals, and therefore elicit not only radiological impacts but also chemical toxicity. In the present study, we aimed to determine the effects of hydrogenated cement particles (HCPs) as a first step before evaluating any radiotoxicity of tritiated cement particles in the marine mussels, Mytilus galloprovincialis. Responses at different levels of biological organisation were assessed, including clearance rate (CR), tissue specific accumulation, DNA damage and transcriptional expression of key stress related genes. Acute (5 h) and medium-term, chronic (11 d) exposures to 1000 µg L-1 HCPs showed that bioaccumulation, assessed using Cu as a proxy and determined by inductively coupled plasma mass spectrometry, was time and tissue dependent. The highest levels of Cu were found in the digestive gland (DG) after 11 d. HCP exposure caused changes in the expression of oxidative and other stress-related genes, including mt20 in DG and gst and sod in the gill after 5 h exposure, while an overexpression of hsp70 in the gill was observed after 11 d. Genotoxic effects in haemocytes were observed after 11 d of HCP exposure. Multivariate analysis indicated that oxidative stress is the most probable factor contributing to overall physiological dysfunction. Our results provide a baseline to perform further studies employing tritiated cement particles. Specifically, future work should focus on the DG since only this tissue showed significant bioaccumulation when compared to the negative control.

2.
Aquat Toxicol ; 265: 106741, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944325

RESUMO

It is becoming increasingly recognised that contaminants are not isolated in their threats to the aquatic environment, with recent shifts towards studying the effects of chemical mixtures. In this study, adult marine mussels (Mytilus galloprovincialis) were exposed to two aqueous concentrations of the essential trace metal, Cu (5 and 32 µg L-1), and the non-essential metal, Pb (5 and 25 µg L-1), both individually and in binary mixtures. After a 14-day exposure, metal accumulation was determined in the digestive gland, gill and mantle tissues by inductively coupled plasma-mass spectrometry following acid digestion, and a number of biochemical, neurotoxic and physiological markers were assessed. These included measurements of DNA damage using comet assay, total glutathione concentration, acetylcholinesterase (AChE) activity and clearance rate. Metal accumulation was greater in the digestive gland and gill than in the mantle, and based on computed free ion concentrations, was greater for Pb than for Cu. Copper exhibited an inhibitory effect on Pb accumulation but Pb did not appear to affect Cu accumulation. Comet assay results revealed DNA damage (i.e., genotoxic effects) in all treatments but differences between the exposures were not significant (p > 0.05), and there were no significant differences in AChE activities between treatments. The most distinctive impacts were a reduction in clearance rate resulting from the higher concentration of Cu, with and without Pb, and an increase in glutathione in the gill resulting from the higher concentration of Cu without Pb. Multivariate analysis facilitated the development of a conceptual model based on the current findings and previously published data on the toxicity and intracellular behaviour of Cu and Pb that will assist in the advancement of regulations and guidelines regarding multiple metal contaminants in the environment.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/análise , Chumbo/toxicidade , Acetilcolinesterase , Poluentes Químicos da Água/toxicidade , Dano ao DNA , Glutationa
5.
Int J Radiat Biol ; 98(6): 1106-1119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32970511

RESUMO

PURPOSE: Contaminants seldom occur in isolation in the aquatic environment. While pollution of coastal and inland water bodies has received considerable attention to date, there is limited information on potential interactive effects between radionuclides and metals. Whether by accidental or controlled release, such contaminants co-exist in aquatic ecosystems and can pose an enhanced threat to biota. Using a range of biological responses, the study aimed to evaluate relative interactive effects on representative freshwater and marine bivalve species. METHODS: An integrated, multi-biomarker approach was adopted to investigate response to copper (Cu, 18 µg L-1), a known environmentally relevant genotoxic metal and differing concentrations of phosphorus-32 (32P; 0.1 and 1 mGy d-1), alone and in combination in marine (Mytilus galloprovincialis) and freshwater (Dreissena polymorpha) mussels. Genetic and molecular biomarkers were determined post-exposure and included DNA damage (as measured by the comet assay), micronuclei (MN) formation, γ-H2AX foci induction and the expression of key stress-related genes (i.e. hsp70/90, sod, cat, gst). RESULTS: Overall, using a tissue-specific (i.e. gill and digestive gland) approach, genotoxic response was reflective of exposures where Cu had a slight additive effect on 32P-induced damage across the species (but not all), cell types and dose rates. Multivariate analysis found significant correlations between comet and γ-H2AX assays, across both the tissues. Transcriptional expression of selected genes were generally unaltered in response to contaminant exposures, independent of species or tissues. CONCLUSIONS: Our study is the first to explore the interactive effects of ionizing radiation (IR) and Cu on two bivalve species representing two ecological habitats. The complexity of IR-metal interactions demonstrate that extrapolation of findings obtained from single stressor studies into field conditions could be misrepresentative of real-world environments. In turn, environmental protective strategies deemed suitable in protecting biota from a single, isolated stressor may not be wholly adequate.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Cobre/análise , Cobre/metabolismo , Cobre/toxicidade , Ecossistema , Água Doce , Mytilus/genética , Mytilus/metabolismo , Radioisótopos de Fósforo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
6.
MethodsX ; 8: 101568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004202

RESUMO

The number of studies reporting hormetic responses is rapidly increasing, and quantitative evaluations are needed to improve the understanding of hormetic dose responses. However, there is no standardized methodology to estimate the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships developed using data mined from the published literature. Here, we propose a protocol that can be followed to estimate NOAEL, a process that is illustrated using a specific example. This protocol can be used for maintaining a mutual language (since NOAEL can be defined in different ways), permitting comparisons among different studies, and facilitating cumulative science.

7.
Sci Total Environ ; 755(Pt 1): 142355, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022458

RESUMO

The hypothesis that C60 fullerene nanoparticles (C60) exert an antagonistic interactive effect on the toxicity of benzo[a]pyrene (BaP) has been supported by this investigation. Mussels were exposed to BaP (5, 50 & 100µg/L) and C60 (C60-1mg/L) separately and in combination. Both BaP and C60 were shown to co-localize in the secondary lysosomes of the hepatopancreatic digestive cells in the digestive gland where they reduced lysosomal membrane stability (LMS) or increased membrane permeability, while BaP also induced increased lysosomal lipid and lipofuscin, indicative of oxidative cell injury and autophagic dysfunction. Combinations of BaP and C60 showed antagonistic effects for lysosomal stability, mTORC1 (mechanistic target of rapamycin complex 1) inhibition and intralysosomal lipid (5 & 50µg/L BaP). The biomarker data (i.e., LMS, lysosomal lipidosis and lipofuscin accumulation; lysosomal/cell volume and dephosphorylation of mTORC1) were further analysed using multivariate statistics. Principal component and cluster analysis clearly indicated that BaP on its own was more injurious than in combination with C60. Use of a network model that integrated the biomarker data for the cell pathophysiological processes, indicated that there were significant antagonistic interactions in network complexity (% connectance) at all BaP concentrations for the combined treatments. Loss of lysosomal membrane stability probably causes the release of intralysosomal iron and hydrolases into the cytosol, where iron can generate harmful reactive oxygen species (ROS). It was inferred that this adverse oxidative reaction induced by BaP was ameliorated in the combination treatments by the ROS scavenging property of intralysosomal C60, thus limiting the injury to the lysosomal membrane; and reducing the oxidative damage in the cytosol and to the nuclear DNA. The ROS scavenging by C60, in combination with enhanced autophagic turnover of damaged cell constituents, appeared to have a cytoprotective effect against the toxic reaction to BaP in the combined treatments.


Assuntos
Fulerenos , Nanopartículas , Animais , Benzo(a)pireno/toxicidade , Fulerenos/toxicidade , Lisossomos , Modelos Animais , Nanopartículas/toxicidade
8.
Dose Response ; 18(3): 1559325820934227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684871

RESUMO

Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5'-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32298815

RESUMO

Histidine-rich Glycoprotein (HRG) is the most abundant protein in mussel haemolymph plasma. In this study, we determined by qRT-PCR and FISH analysis the tissues involved in HRG synthesis in Mytilus galloprovincialis. The relative HRG mRNA abundance in haemocytes, digestive gland, gills, gonads, posterior adductor muscle, and mantle edge was evaluated. Immunofluorescence analysis of HRG protein distribution in the whole mussel body was performed by a specific antibody. Our data showed the highest gene expression level of HRG in the mantle edge. In particular the outer fold of the mantle edge was shown to be the site that produced the highest amount of the protein. These data indicate a possible role of this Ca2++-binding protein in shell growth. HRG was also found in many other tissues and cells in contact with the haemolymph. This may be related to the immuno-responsive role of this protein. The presence of HRG in tissues related to the feeding pathways and mucous production could indicate the potential significance of this protein into mucus associated antimicrobial action. Overall, the results demonstrate that numerous mussel tissues are involved in HRG production, some of which can release the protein into the haemolymph and others into the extrapallial fluid. These data indicate that extrapallial (EP) protein and HRG are the same protein. An annual cycle survey showed a maximum HRG mRNA as well HRG protein production in mussel tissues in summer, a season in which the animals show the greatest growth, but are more likely to be exposed to microbial pathogens.


Assuntos
Regulação da Expressão Gênica/genética , Glicoproteínas/metabolismo , Mytilus/metabolismo , Proteínas/metabolismo , Animais , Brânquias/metabolismo , Glicoproteínas/biossíntese , Glicoproteínas/genética , Gônadas/metabolismo , Hemócitos/metabolismo , Hemolinfa/metabolismo , Hibridização in Situ Fluorescente , Músculos/metabolismo , Proteínas/genética
10.
Chemosphere ; 246: 125707, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31891845

RESUMO

The effects of C60 on mTOR (mechanistic Target of Rapamycin) activity in mussel digestive gland were investigated. mTOR is a kinase that senses physiological and environmental signals to control eukaryotic cell growth. mTOR is present in two complexes: the phosphorylated mTORC1 regulates cell growth by activating anabolic processes, and by inhibiting catabolic processes (i.e. autophagy); mTORC2 also modulates actin cytoskeleton organization. Mussels were exposed to C60 (0.01, 0.1 and 1 mg/L) for 72 h. Immunocytochemical analysis using a specific antibody revealed the cellular distribution of C60 in mussel digestive gland, already at the lowest concentration. In exposed mussels, the dephosphorylation of mTORC1 and mTORC2 may explain the C60 effects, i.e. the reduction of lysosomal membrane stability, the enhancement of LC3B protein, and the increase of lysosomal/cytoplasmic volume ratio; as well the cytoskeletal alterations. No oxidative stress was observed. Multivariate analysis was used to facilitate the interpretation of the biomarker data. Finally, a low density oligo-microarray was used to understand the cellular responses to fullerene. Transcriptomics identified a number of differentially expressed genes (DEGs) showing a maximum in animals exposed to 0.1 mg/L C60. The most affected processes are associated with energy metabolism, lysosomal activity and cytoskeleton organization. In this study, we report the first data on the subcellular distribution of C60 in mussel's cells; and on the involvement of mTOR inhibition in the alterations due to nanoparticle accumulation. Overall, mTOR deregulation, by affecting protein synthesis, energy metabolism and autophagy, may reduce the capacity of the organisms to effectively grow and reproduce.


Assuntos
Fulerenos/toxicidade , Mytilus edulis/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético , Humanos , Lisossomos/metabolismo , Mytilus edulis/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
11.
Nanotoxicology ; 13(10): 1324-1343, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462104

RESUMO

The interactions between carbon-based engineered nanoparticles (ENPs) and organic pollutants might enhance the uptake of contaminants into biota. The present integrated study aimed to assess this potential 'Trojan Horse', probing the interactive effects of purpose-made multi-walled carbon nanotubes (MWCNTs), a representative ENP, and benzo[a]pyrene (BaP), a ubiquitous polycyclic aromatic hydrocarbon (PAH) pollutant, on the marine mussel Mytilus galloprovincialis. Mussels were exposed to MWCNTs and BaP either alone or in various combinations. The co-exposure of BaP with MWCNTs revealed that the presence of MWCNTs enhanced the aqueous concentrations of BaP, thereby reducing the uptake of this pollutant by mussels as evidenced by lowering BaP concentrations in the tissues. Determination of DNA damage (comet assay) showed a concentration-dependent response for BaP alone which was absent when MWCNTs were present. Global gene expression using microarray analyses indicated that BaP and MWCNTs, in combination, differentially activated those genes which are involved in DNA metabolism compared to the exposures of BaP or MWCNTs alone, and the gene expression response was tissue-specific. Mechanisms to explain these results are discussed and relate primarily to the adsorption of BaP on MWCNTs, mediated potentially by van der Waals interactions. The use of a novel approach based on gold-labeled MWCNTs to track their uptake in tissues improved the traceability of nanotubes in biological samples. Overall, our results did not indicate the 'Trojan Horse' effects following co-exposure to the contaminants and clearly showed that the adsorption of BaP to MWCNTs modified the uptake of the pollutant in marine mussels.


Assuntos
Benzo(a)pireno/toxicidade , Mytilus/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Ensaio Cometa , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
12.
Nanomaterials (Basel) ; 9(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288459

RESUMO

This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.

13.
Aquat Toxicol ; 195: 114-128, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29306034

RESUMO

Lysosomal membrane stability (LMS) has been used in various organisms as a very sensitive biomarker of stress. However, despite the abundance of data about regulation of the autophagic process in mammals, in the invertebrates there is only limited mechanistic understanding. Marine mussels (Mytilus galloprovincialis Lam.) are bivalve molluscs, widely used as models in ecotoxicology and as environmental bioindicators of sea water quality. In order to elucidate this fundamental process, in the present study, mussels were exposed for 3 days to a "priority", ubiquitous environmental contaminant, benzo[a]pyrene (B[a]P) at different concentrations (i.e. 5, 50, 100 µg/L seawater). B[a]P accumulated in lysosomes of digestive tubule epithelial cells (digestive cells) and in enlarged lipid-rich lysosomes (autolysosomes) as detected by immunofluorescence and UV-fluorescence. B[a]P also activated the autophagic process with a marked decrease of LMS and concurrent increase in lysosomal/cytoplasmic volume ratio. Dephosphorylation of mTOR contributes to increased lysosomal membrane permeability and induced autophagy. B[a]P induced a decrease in phosphorylated (active form) mTOR. The probable role of mTOR in cell signalling and the regulation of the cellular responses to the contaminants has been also confirmed in a field study, where there was significant inactivation of mTOR in stressed animals. Statistical and network modelling supported the empirical investigations of autophagy and mTOR; and was used to integrate the mechanistic biomarker data with chemical analysis and DNA damage.


Assuntos
Autofagia , Poluentes Ambientais/toxicidade , Lisossomos/metabolismo , Mytilus/citologia , Mytilus/metabolismo , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Biomarcadores/metabolismo , Imuno-Histoquímica , Lisossomos/efeitos dos fármacos , Modelos Estatísticos , Análise Multivariada , Mytilus/efeitos dos fármacos , Análise de Componente Principal , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
14.
PLoS One ; 12(6): e0178460, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651000

RESUMO

Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new 'STressREsponse Microarray' (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 µg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.


Assuntos
Benzo(a)pireno/toxicidade , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes da Água/toxicidade , Animais , Biomarcadores , Dano ao DNA/efeitos dos fármacos , Exposição Ambiental , Monitoramento Ambiental , Brânquias/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mytilus/genética
15.
Ecotoxicol Environ Saf ; 138: 298-308, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28086183

RESUMO

Chromium (Cr) is one of the major and most detrimental pollutant, widely present in the environment as a result of several anthropogenic activities. In mammalian cells, Cr(VI) is known to enhance reactive oxygen species (ROS) production and to cause toxic and genotoxic effects. Less commonly investigated are the effects and mode of action of this contaminant in invertebrates, particularly in soil organisms. In this work, earthworms of the species Eisenia andrei were exposed for 1 and 3 days to various sublethal concentrations of Cr(VI) (2, 15, 30µgmL-1) using the paper contact toxicity test. In amoeboid leukocytes we investigated intracellular ROS and lipoperoxide production, oxidative DNA damage, and the effects on different cell functions. The analysis of the results shows that Cr(VI) triggered severe adverse reactions; the first events were an increase of intracellular ROS levels, generating in the cells oxidative stress conditions leading to membrane lipid peroxidation and oxidative DNA damage. Lysosomes showed relevant changes such as a strong membrane destabilization, which was accompanied by an increased catabolism of cytoplasmic proteins and accumulation of lipofuscin. With an increase in the dose and/or time of exposure, the physiological status of intracellular organelles (such as lysosomes, nucleus and mitochondria) showed further impairment and amoebocyte immune functions were adversely affected, as shown by the decrease of the phagocytic activity. By mapping the responses of the different parameters evaluated, diagnostic of (oxidative) stress events, against lysosomal membrane stability, a "health status" indicator (able to describe the stress syndrome from its early phase to pathology), we have shown that this biomarker is suitable as a prognostic test for health of earthworms. This is viewed as a crucial step toward the derivation of explanatory frameworks for prediction of pollutant impact on animal health.


Assuntos
Cromo/toxicidade , Leucócitos/metabolismo , Oligoquetos/metabolismo , Estresse Oxidativo , Animais , Biomarcadores/metabolismo , Núcleo Celular/efeitos dos fármacos , Dano ao DNA , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Peroxidação de Lipídeos , Lipofuscina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Environ Res ; 140: 65-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25825132

RESUMO

Living and taking recreation in rural and coastal environments promote health and wellbeing, although the causal factors involved are unclear. It has been proposed that such environments provide a counter to the stresses of everyday living, leading to enhanced mental and physical health. Living in natural environments will result in airborne exposure to a wide range of biogenic chemicals through inhalation and ingestion of airborne microbiota and particles. The "biogenics" hypothesis formulated here is that regular exposure to low concentrations of mixtures of natural compounds and toxins in natural environments confers pleiotropic health benefits by inhibiting the activities of interconnected cell signalling systems, particularly PI3K/Akt/mTORC1. When overactive, Akt and mTOR (mTORC1) can lead to many pathological processes including cancers, diabetes, inflammation, immunosuppression, and neurodegenerative diseases. There is a substantial body of evidence that many natural products (i.e., from bacteria, algae, fungi and higher plants) inhibit the activities of these protein kinases. Other mTOR-related interconnected metabolic control "switches" (e.g., PTEN & NF-κB), autophagy and other cytoprotective processes are also affected by natural products. The "biogenics" hypothesis formulated here is that regular intermittent exposure to a mixture of airborne biogenic compounds in natural environments confers pleiotropic health benefits by inhibiting activities of the highly interconnected PI3K/Akt/mTORC1 system. It is proposed that future experimental exposures to biogenic aerosols in animal models coupled with epidemiology, should target the activities of the various kinases in the PI3K/Akt/mTORC1 systems and related physiological processes for selected urban, rural and coastal populations in order to test this hypothesis.


Assuntos
Poluentes Atmosféricos/toxicidade , Nível de Saúde , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , População Rural , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Humanos
17.
Mar Environ Res ; 107: 35-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25881010

RESUMO

The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes.


Assuntos
Adaptação Fisiológica/fisiologia , Autofagia/fisiologia , Privação de Alimentos/fisiologia , Hormese , Lipofuscina/metabolismo , Modelos Biológicos , Caramujos/fisiologia , Animais , Hepatopâncreas/metabolismo , Caramujos/citologia , Estresse Fisiológico/fisiologia
18.
Environ Pollut ; 196: 60-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305466

RESUMO

In this study, a battery of biomarkers was utilised to evaluate the stress syndrome induced in the earthworm Eisenia andrei by exposure to environmentally realistic concentrations of benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) in OECD soil. The set of tests was then employed to assess the toxicity of field soils contaminated with organic xenobiotic compounds (such as PAHs, dioxins and PCBs). The results highlighted an impairment of immune and metabolic functions and genotoxic damage in worms exposed also to lower bioavailable concentrations of toxic chemicals. Multivariate analysis of biomarker data showed that all different contaminated soils had a detrimental effect on the earthworms. A separation between temporal and concentration factors was also evident for B[a]P and TCDD treatments; and field contaminated soils were further differentiated reflecting a diverse contamination. Multivariate analysis also demonstrated that lysosomal membrane stability can be considered a prognostic indicator for worm health status.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Animais , Benzo(a)pireno/toxicidade , Biomarcadores/metabolismo , Dano ao DNA , Dioxinas/análise , Poluição Ambiental/análise , Oligoquetos/metabolismo , Dibenzodioxinas Policloradas/análise , Solo , Poluentes do Solo/análise
19.
Chemosphere ; 107: 282-289, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24412505

RESUMO

An immunohistochemical method using antibodies against polycyclic aromatic hydrocarbons (PAHs) and dioxins was developed on frozen tissue sections of the earthworm Eisenia andrei exposed to environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50 ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (0.01, 0.1, 2 ppb) in spiked standard soils. The concentrations of B[a]P and TCDD in E. andrei exposed to the same conditions were also measured using analytical chemical procedures. The results demonstrated that tissues of worms exposed to even minimal amount of B[a]P and TCDD reacted positively and specifically to anti-PAHs and -dioxins antibody. Immunofluorescence revealed a much more intense staining for the gut compared to the body wall; moreover, positively immunoreactive amoeboid coelomocytes were also observed, i.e. cells in which we have previously demonstrated the occurrence of genotoxic damage. The double immunolabelling with antibodies against B[a]P/TCDD and the lysosomal enzyme cathepsin D demonstrated the lysosomal accumulation of the organic xenobiotic compounds, in particular in the cells of the chloragogenous tissue as well as in coelomocytes, involved into detoxification and protection of animals against toxic chemicals. The method described is timesaving, not expensive and easily applicable.


Assuntos
Benzo(a)pireno/metabolismo , Imunofluorescência/métodos , Oligoquetos/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Animais , Transporte Biológico , Catepsina D/metabolismo , Dano ao DNA , Solo/química
20.
Microb Ecol ; 65(4): 889-900, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503989

RESUMO

The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.


Assuntos
Ecossistema , Saúde Pública , Água do Mar/química , Poluição da Água , União Europeia/organização & administração , Humanos , Água do Mar/microbiologia , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...