Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 15(5): 1101-1110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35970317

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) improves cognition in humans and rodents, but the effects of a single session of VNS on performance and plasticity are not well understood. OBJECTIVE: Behavioral performance and hippocampal (HC) electrophysiology/neurotrophin expression were measured in healthy adult rats after VNS paired training to investigate changes in cognition and synaptic plasticity. METHODS: Platinum/iridium electrodes were surgically implanted around the left cervical branch of the VN of anesthetized male Sprague-Dawley rats (N = 47). VNS (100 µs biphasic pulses, 30 Hz, 0.8 mA) paired Novel Object Recognition (NOR)/Passive Avoidance Task (PAT) were assessed 24 h after training and post-mortem tissue was collected 48 h after VNS (N = 28). Electrophysiology recordings were collected using a microelectrode array system to assess functional effects on HC slices 90 min after VNS (N = 19). Sham received the same treatment without VNS and experimenters were blinded. RESULTS: Stimulated rats exhibited improved performance in NOR (p < 0.05, n = 12) and PAT (p < 0.05, n = 14). VNS enhanced long-term potentiation (p < 0.05, n = 7-12), and spontaneous spike amplitude (p < 0.05, n = 7-12) and frequency (p < 0.05, n = 7-12) in the CA1. Immunohistochemical analysis found increased brain-derived neurotrophic factor expression in the CA1 (p < 0.05, n = 8-9) and CA2 (p < 0.01, n = 7-8). CONCLUSION: These findings suggest that our VNS parameters promote synaptic plasticity and target the CA1, which may mediate the positive cognitive effects of VNS. This study significantly contributes to a better understanding of VNS mediated HC synaptic plasticity, which may improve clinical utilization of VNS for cognitive enhancement.


Assuntos
Plasticidade Neuronal , Estimulação do Nervo Vago , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Eletrodos Implantados , Hipocampo/fisiologia , Irídio/metabolismo , Masculino , Plasticidade Neuronal/fisiologia , Platina/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia
2.
Front Neurosci ; 16: 1069484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620466

RESUMO

Transcranial direct current stimulation (tDCS) has shown therapeutic potential to mitigate symptoms of various neurological disorders. Studies from our group and others used rodent models to demonstrate that tDCS modulates synaptic plasticity. We previously showed that 30 min of 0.25 mA tDCS administered to rats induced significant enhancement in the synaptic plasticity of hippocampal neurons. It has also been shown that tDCS induces expression of proteins known to mediate synaptic plasticity. This increase in synaptic plasticity may underly the observed therapeutic benefits of tDCS. However, the anti-inflammatory benefits of tDCS have not been thoroughly elucidated. Here we report that three sessions of tDCS spaced 1-3 weeks apart can significantly reduce levels of several inflammatory cytokines in brains of healthy rats. Rats receiving tDCS experienced enhanced synaptic plasticity without detectable improvement in behavioral tests or significant changes in astrocyte activation. The tDCS-mediated reduction in inflammatory cytokine levels supports the potential use of tDCS as a countermeasure against inflammation and offers additional support for the hypothesis that cytokines contribute to the modulation of synaptic plasticity.

3.
Neurobiol Learn Mem ; 167: 107126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765800

RESUMO

An increasing number of studies using human subjects substantiate the use of transcranial direct current stimulation (tDCS) as a noninvasive approach to treat various neurological symptoms. tDCS has been tested in conditions from motor to cognition dysfunctions. Performance enhancement of healthy subjects using tDCS has also been explored. The underlying physiological mechanism for tDCS effects is hypothesized to be through changes in neuroplasticity and we have previously demonstrated that in vivo anodal tDCS can enhance neuroplasticity of hippocampal CA1 neurons. The purpose of this study was to determine whether the underlying electrophysiological changes that occur following in vivo tDCS are polarity specific. We also examined both the CA1 and CA3 regions of the hippocampus to determine whether the tDCS effects were subfield specific. We conducted in vivo tests of cathodal tDCS versus anodal tDCS on synaptic plasticity of CA1 and CA3 neurons of male rats. In each region we assessed long term potentiation (LTP), paired pulse facilitation (PPF) and long term depression (LTD). In the CA1 region, we found anodal tDCS significantly enhanced not only LTP and PPF, but also LTD. There was no statistical difference in LTP, PPF or LTD of hippocampal CA1 neurons resulting from cathodal tDCS. Neither anodal nor cathodal tDCS induced significant changes in neuroplasticity of hippocampal CA3 neurons. Results indicate that the effects of tDCS are subfield specific and polarity dependent with anodal tDCS having greater impact on synaptic activity in the rat hippocampus than cathodal tDCS.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Potenciação de Longa Duração , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Potenciais de Ação , Animais , Masculino , Ratos Sprague-Dawley
4.
Front Mol Neurosci ; 10: 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555095

RESUMO

Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a) augment cognitive outcomes in healthy subjects; and (b) prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD), ketone supplemented (KS), or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA) axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of ß-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the control diet group. Our results highlight the complex relationship between peripheral metabolism, behavioral performance and biochemical changes in the hippocampus. Endogenous ketosis improved behavioral and metabolic parameters associated with energy metabolism and cognition while ketone supplementation replicated the biochemical effects within the hippocampus but only showed modest effects on behavioral improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...