Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38841758

RESUMO

Historically, programs of physical education and sport were housed in gymnasium buildings on academic campuses. As physical education evolved to the more scientifically focused successor departments of exercise science and kinesiology, faculty specialization developed in the physiology of exercise. With time, some faculty broadened their research to study the integrative physiology of other biological states and stressors. Through this series of events, a small group of integrative physiologists formed in the Carlson Gymnasium at the University of Colorado Boulder during the 1990s with the goal of conducting novel biomedical research. The challenges were daunting: no contemporary core laboratory facilities, lack of temperature control, piercing external noise, pests, regular flooding, electrical power outages, and lack of funds for renovation. Despite these obstacles, the group established an innovative program of translational physiological research ranging from high-throughput molecular analyses to cell models to rodent studies to clinical trials in humans. These investigators supported their work with grant awards from the NIH, Department of Defense, NASA, American Heart Association, and private research foundations totaling ~$80M in direct costs from the late 1980s to 2020. Collectively, the faculty and their laboratory personnel published ~950 articles in peer-reviewed scientific journals. Over that period, 379 undergraduate students, 340 graduate students, 84 postdoctoral fellows, and dozens of junior research faculty received scientific training in Carlson, supported by >$21M in extramural funding. What was accomplished by these few integrative physiologists speaks to the importance of the qualities of the investigators rather than their research facilities in determining scientific success.

2.
Circ Heart Fail ; 7(1): 172-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24284026

RESUMO

BACKGROUND: Remodeling of myocardial phospholipids has been reported in various forms of heart failure for decades, but the mechanism and pathophysiological relevance of this phenomenon have remained unclear. We examined the hypothesis that δ-6 desaturase (D6D), the rate-limiting enzyme in long-chain polyunsaturated fatty acid biosynthesis, mediates the signature pattern of fatty acid redistribution observed in myocardial phospholipids after chronic pressure overload and explored plausible links between this process and disease pathogenesis. METHODS AND RESULTS: Compositional analysis of phospholipids from hearts explanted from patients with dilated cardiomyopathy revealed elevated polyunsaturated fatty acid product/precursor ratios reflective of D6D hyperactivity, manifesting primarily as lower levels of linoleic acid with reciprocally higher levels of arachidonic and docosahexaenoic acids. This pattern of remodeling was attenuated in failing hearts chronically unloaded with a left ventricular assist device. Chronic inhibition of D6D in vivo reversed similar patterns of myocardial polyunsaturated fatty acid redistribution in rat models of pressure overload and hypertensive heart disease and significantly attenuated cardiac hypertrophy, fibrosis, and contractile dysfunction in both models. D6D inhibition also attenuated myocardial elevations in pathogenic eicosanoid species, lipid peroxidation, and extracellular receptor kinase 1/2 activation; normalized cardiolipin composition in mitochondria; reduced circulating levels of inflammatory cytokines; and elicited model-specific effects on cardiac mitochondrial respiratory efficiency, nuclear factor κ B activation, and caspase activities. CONCLUSIONS: These studies demonstrate a pivotal role of essential fatty acid metabolism in myocardial phospholipid remodeling induced by hemodynamic stress and reveal novel links between this phenomenon and the propagation of multiple pathogenic systems involved in maladaptive cardiac remodeling and contractile dysfunction [corrected].


Assuntos
Progressão da Doença , Ácidos Graxos Insaturados/metabolismo , Insuficiência Cardíaca/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Fosfolipídeos/metabolismo , Animais , Caspases/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Humanos , Linoleoil-CoA Desaturase/antagonistas & inibidores , Linoleoil-CoA Desaturase/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos SHR
3.
Diab Vasc Dis Res ; 10(3): 222-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23162060

RESUMO

Physical activity decreases risk for diabetes and cardiovascular disease morbidity and mortality; however, the specific impact of exercise on the diabetic vasculature is unexamined. We hypothesized that an acute, moderate exercise intervention in diabetic and hypertensive rats would induce mitochondrial biogenesis and mitochondrial antioxidant defence to improve vascular resilience. SHHF/Mcc-fa(cp) lean (hypertensive) and obese (hypertensive, insulin resistant), as well as Sprague Dawley (SD) control rats were run on a treadmill for 8 days. In aortic lysates from SD rats, we observed a significant increase in subunit proteins from oxidative phosphorylation (OxPhos) complexes I-III, with no changes in the lean or obese SHHF rats. Exercise also increased the expression of mitochondrial antioxidant defence uncoupling protein 3 (UCP3) (p < 0.05) in SHHF lean rats, whereas no changes were observed in the SD or SHHF obese rats with exercise. We evaluated upstream signalling pathways for mitochondrial biogenesis, and only peroxisome proliferators-activated receptor gamma coactivator 1α (PGC-1α) significantly decreased in SHHF lean rats (p < 0.05) with exercise. In these experiments, we demonstrate absent mitochondrial induction with exercise exposure in models of chronic vascular disease. These findings suggest that chronic vascular stress results in decreased sensitivity of vasculature to the adaptive mitochondrial responses normally induced by exercise.


Assuntos
Vasos Sanguíneos/fisiopatologia , Modelos Animais de Doenças , Hipertensão/terapia , Síndrome Metabólica/prevenção & controle , Mitocôndrias/metabolismo , Atividade Motora , Obesidade/terapia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/imunologia , Aorta/metabolismo , Aorta/fisiopatologia , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Citocinas/sangue , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Canais Iônicos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosforilação Oxidativa , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Proteína Desacopladora 3
4.
Cardiovasc Res ; 94(3): 460-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22411972

RESUMO

AIMS: Cardiolipin (CL) is a tetra-acyl phospholipid that provides structural and functional support to several proteins in the inner mitochondrial membrane. The majority of CL in the healthy mammalian heart contains four linoleic acid acyl chains (L(4)CL). A selective loss of L(4)CL is associated with mitochondrial dysfunction and heart failure in humans and animal models. We examined whether supplementing the diet with linoleic acid would preserve cardiac L(4)CL and attenuate mitochondrial dysfunction and contractile failure in rats with hypertensive heart failure. METHODS AND RESULTS: Male spontaneously hypertensive heart failure rats (21 months of age) were administered diets supplemented with high-linoleate safflower oil (HLSO) or lard (10% w/w; 28% kilocalorie fat) or without supplemental fat (control) for 4 weeks. HLSO preserved L(4)CL and total CL to 90% of non-failing levels (vs. 61-75% in control and lard groups), and attenuated 17-22% decreases in state 3 mitochondrial respiration observed in the control and lard groups (P < 0.05). Left ventricular fractional shortening was significantly higher in HLSO vs. control (33 ± 2 vs. 29 ± 2%, P < 0.05), while plasma insulin levels were lower (5.4 ± 1.1 vs. 9.1 ± 2.3 ng/mL; P < 0.05), with no significant effect of lard supplementation. HLSO also increased serum concentrations of several eicosanoid species compared with control and lard diets, but had no effect on plasma glucose or blood pressure. CONCLUSION: Moderate consumption of HLSO preserves CL and mitochondrial function in the failing heart and may be a useful adjuvant therapy for this condition.


Assuntos
Cardiolipinas/metabolismo , Insuficiência Cardíaca/dietoterapia , Ácido Linoleico/uso terapêutico , Mitocôndrias/metabolismo , Óleo de Cártamo/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Ácido Linoleico/farmacologia , Masculino , Ratos , Ratos Endogâmicos SHR/metabolismo
5.
J Appl Physiol (1985) ; 111(3): 905-15, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21393468

RESUMO

The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage.


Assuntos
Exercício Físico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético , Humanos , Canais KATP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
6.
Mech Ageing Dev ; 131(11-12): 739-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20934448

RESUMO

Short-term caloric restriction (CR) protects the young myocardium against ischemia/reperfusion (I/R) injury through a mechanism involving AMP-activated protein kinase (AMPK). Here we ask whether a life-long CR intervention can extend this protection to the aged myocardium, and whether AMP-activated protein kinase (AMPK) plays a role in that protection. Hearts from ad libitum fed (AL) and life-long calorically restricted (LCR) mice were examined at 30 months of age by 25/90min global I/R, with and without AMPK inhibition (AraA). LCR hearts were protected from infarction (AL, 28±4% vs. LCR, 10±1%, p<0.01) and post-ischemic functional deficit (LVDP recovery: AL, 65±8% vs. LCR, 93±7%, p<0.01). Pre-ischemic AraA impaired both of these protective effects (Infarct size: LCR+AraA, 22±4%; LVDP recovery: LCR+AraA, 82±9%, both p vs. AL >0.1). AMPKα phosphorylation was dramatically increased in LCR hearts prior to I/R (AL, 1.18±0.01 vs. LCR, 1.68±0.04, ratio, p<0.0001), and accompanied by a more modest increase in total AMPKα (AL, 2.18±0.03 vs. LCR, 2.39±0.08 ratio, p<0.05). These results indicate that life-long caloric restriction profoundly protects the aged heart against I/R injury, and suggest that AMPK may play a role in that protection.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Envelhecimento/fisiologia , Restrição Calórica , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Camundongos , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosforilação
7.
Am J Physiol Heart Circ Physiol ; 298(6): H1719-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20363890

RESUMO

Using neonatal rat ventricular myocytes, we previously reported that the expression of a dominant negative form of the c-Fos proto-oncogene (AFos) inhibited activator protein 1 activity and blocked the induction of the pathological gene profile stimulated by phenylephrine (PE) while leaving growth unaffected. We now extend these observations to the adult rat ventricular myocyte (ARVM) to understand the relationship between gene expression, growth, and function. Ventricular myocytes were isolated from adult rats and infected with adenovirus expressing beta-galactosidase (control) or AFos. The cells were subsequently treated with PE, and protein synthesis, gene program, calcium transients, and contractility were evaluated. As seen with the neonatal rat ventricular myocytes, in control cells PE stimulated an increase in protein synthesis, induced the pathological gene profile, and exhibited both depressed contractility and calcium transients. Although ARVMs expressing AFos still had PE-induced growth, pathological gene expression as well as contractility and calcium handling abnormalities were inhibited. To determine a possible mechanism of the preserved myocyte function in AFos-expressing cells, we examined phospholamban (PLB) and sarco(endo)plasmic reticulum calcium-ATPase proteins. Although there was no change in total PLB or sarco(endo)plasmic reticulum calcium-ATPase expression in response to PE treatment, PE decreased the phosphorylation of PLB at serine-16, an observation that was prevented in AFos-expressing cells. In conclusion, although PE-induced growth was unaffected in AFos-expressing ARVMs, the expression of the pathological gene profile was inhibited and both contractile function and calcium cycling were preserved. The inhibition of functional deterioration was, in part, due to the preservation of PLB phosphorylation.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Genes fos/fisiologia , Ventrículos do Coração/citologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Adenoviridae/genética , Animais , Cálcio/metabolismo , Cardiotônicos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Genes fos/genética , Hipertrofia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição AP-1/fisiologia , beta-Galactosidase/genética , beta-Galactosidase/fisiologia
8.
J Lipid Res ; 51(3): 525-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19741254

RESUMO

Cardiolipin (CL) is an essential phospholipid component of the inner mitochondrial membrane. In the mammalian heart, the functional form of CL is tetralinoleoyl CL [(18:2)(4)CL]. A decrease in (18:2)(4)CL content, which is believed to negatively impact mitochondrial energetics, occurs in heart failure (HF) and other mitochondrial diseases. Presumably, (18:2)(4)CL is generated by remodeling nascent CL in a series of deacylation-reacylation cycles; however, our overall understanding of CL remodeling is not yet complete. Herein, we present a novel cell culture method for investigating CL remodeling in myocytes isolated from Spontaneously Hypertensive HF rat hearts. Further, we use this method to examine the role of calcium-independent phospholipase A(2) (iPLA(2)) in CL remodeling in both HF and nonHF cardiomyocytes. Our results show that 18:2 incorporation into (18:2)(4)CL is: a) performed singly with respect to each fatty acyl moiety, b) attenuated in HF relative to nonHF, and c) partially sensitive to iPLA(2) inhibition by bromoenol lactone. These results suggest that CL remodeling occurs in a step-wise manner, that compromised 18:2 incorporation contributes to a reduction in (18:2)(4)CL in the failing rat heart, and that mitochondrial iPLA(2) plays a role in the remodeling of CL's acyl composition.


Assuntos
Cardiolipinas/química , Cardiolipinas/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilgliceróis/metabolismo , Fosfolipases A2 Independentes de Cálcio/antagonistas & inibidores , Ratos , Ratos Endogâmicos SHR , Estresse Fisiológico , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos
9.
J Physiol ; 587(Pt 23): 5723-37, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19805744

RESUMO

The female myocardium, relative to that of the male, exhibits sustained resistance to ischaemic tissue injury, a phenomenon termed sex-specific cardioprotection (SSC). SSC is dependent upon the sarcolemmal K(ATP) channel (sarcK(ATP)), and protein kinase C (PKC). Here we investigate whether PKC-mediated regulation of sarcK(ATP) concentration can explain this endogenous form of protection. Hearts from male (M) and female (F) rats were Langendorff-perfused for 30 min prior to either regional ischaemia-reperfusion (I/R), or global ischaemia (GISC). For both protocols, pre-ischaemic blockade of PKC was achieved by chelerythrine (Chel) in male (M + C) and female (F + C) hearts. Additional female hearts underwent sarcK(ATP) antagonism during I/R by HMR-1098 (HMR), either alone or in combination with Chel (HMR + Chel). GISC hearts were fractionated to assess cellular distribution of PKC and sarcK(ATP). Sex-specific infarct resistance was apparent under control I/R (F, 23 +/- 3% vs. M, 36 +/- 4%, P < 0.05) and abolished by Chel (F + C, 36 +/- 3%). Female infarct resistance was susceptible to sarcK(ATP) blockade (Control, 16 +/- 2% vs. HMR, 27 +/- 3%), and PKC blockade had no additional effect (HMR + Chel, 26 +/- 2%). The prevalence of Kir6.2 and SUR2 was higher in the sarcolemmal fractions of females (Kir6.2: F, 1.24 +/- 0.07 vs. M, 1.02 +/- 0.06; SUR2: F, 3.16 +/- 0.22 vs. M, 2.45 +/- 0.09; ratio units), but normalized by Chel (Kir6.2: F, 1.06 +/- 0.07 vs. M, 0.99 +/- 0.06; SUR2: F, 2.99 +/- 0.09 vs. M, 2.82 +/- 0.22, M; ratio units). Phosphorylation of sarcolemmal PKC was reduced by Chel (p-PKC/PKC: control, 0.43 +/- 0.02; Chel, 0.29 +/- 0.01; P < 0.01). We conclude that PKC-mediated regulation of sarcK(ATP) may account for the physiologically sustainable dependence of SSC upon both PKC and sarcK(ATP), and that this regulation involves PKC-permitted enrichment of the female sarcolemma with sarcK(ATP). As such, the PKC-sarcK(ATP) axis may represent a target for sustainable prophylactic induction of cardioprotection.


Assuntos
Canais KATP/metabolismo , Infarto do Miocárdio/fisiopatologia , Proteína Quinase C/fisiologia , Sarcolema/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Benzofenantridinas/farmacologia , Western Blotting , Circulação Coronária/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Isoenzimas/metabolismo , Masculino , Infarto do Miocárdio/patologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Droga/metabolismo , Receptores de Droga/fisiologia , Caracteres Sexuais , Trocador de Sódio e Cálcio/metabolismo , Frações Subcelulares/fisiologia , Receptores de Sulfonilureias , Função Ventricular Esquerda/fisiologia
10.
Mol Cell Biochem ; 332(1-2): 225-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19588229

RESUMO

Peroxisome proliferator-activated receptors (PPAR) exist in three different forms, alpha (alpha), beta/delta (beta/delta), or gamma (gamma), all of which are expressed in skeletal muscle and play a critical role in the regulation of oxidative metabolism. The purpose of this investigation was to determine the mRNA expression pattern of the different PPARs and peroxisome proliferator-activated receptor alpha coactivator-1 alpha (PGC-1alpha) in muscles that largely rely on either glycolytic (plantaris) or oxidative (soleus) metabolism. Further, we also examined the alterations in the PPARs mRNA expression after one bout of endurance exercise or after 12 weeks of exercise training in the different muscles. Female Sprague-Dawley rats (5-8 months) were either run on the treadmill once or exercised trained for 12 weeks. The muscles were removed 24 h after the last bout of exercise. The results demonstrated with the exception of PPAR beta/delta, the PPAR mRNAs are expressed to a greater extent in the soleus muscle than in the plantaris muscle in sedentary animals. PPARgamma was the least abundantly expressed PPAR in either the soleus or the plantaris muscle. With respect to exercise training, only PPARgamma mRNA expression increased in the soleus muscle, while PPARbeta/delta and gamma mRNA levels increased in the plantaris muscle. Minimal changes were detected in any of the PPARs with one bout of exercise training. These results suggest that PPARgamma mRNA levels are the lowest in skeletal muscle among all of the PPARs and PPARgamma mRNA is the most responsive to changes in physical activity levels.


Assuntos
Músculo Esquelético/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/genética , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Feminino , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Resistência Física , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Lipid Res ; 50(8): 1600-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19001357

RESUMO

Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.


Assuntos
Cardiolipinas/biossíntese , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Hipertrofia Ventricular Esquerda/patologia , Miocárdio/enzimologia , Aciltransferases/genética , Aciltransferases/metabolismo , Envelhecimento , Animais , Peso Corporal , Cardiolipinas/química , Cardiomiopatia Dilatada/enzimologia , Diglicerídeos de Citidina Difosfato/biossíntese , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Feminino , Expressão Gênica , Ventrículos do Coração , Humanos , Hipertensão , Hipertrofia Ventricular Esquerda/enzimologia , Lisofosfolipídeos/biossíntese , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miocárdio/patologia , Ácidos Fosfatídicos/biossíntese , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
12.
Hypertension ; 52(3): 549-55, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18663155

RESUMO

Recent studies indicate that high-fat diets may attenuate cardiac hypertrophy and contractile dysfunction in chronic hypertension. However, it is unclear whether consuming a high-fat diet improves prognosis in aged individuals with advanced hypertensive heart disease or the extent to which differences in its fatty acid composition modulate its effects in this setting. In this study, aged spontaneously hypertensive heart failure rats were administered a standard high-carbohydrate diet or high-fat diet (42% of kilocalories) supplemented with high-linoleate safflower oil or lard until death to determine their effects on disease progression and mortality. Both high-fat diets attenuated cardiac hypertrophy, left ventricular chamber dilation, and systolic dysfunction observed in rats consuming the high-carbohydrate diet. However, the lard diet significantly hastened heart failure mortality compared with the high-carbohydrate diet, whereas the linoleate diet significantly delayed mortality. Both high-fat diets elicited changes in the myocardial fatty acid profile, but neither had any effect on thromboxane excretion or blood pressure. The prosurvival effect of the linoleate diet was associated with a greater myocardial content and linoleate-enrichment of cardiolipin, an essential mitochondrial phospholipid known to be deficient in the failing heart. This study demonstrates that, despite having favorable effects on cardiac morphology and function in hypertension, a high-fat diet may accelerate or attenuate mortality in advanced hypertensive heart disease depending on its fatty acid composition. The precise mechanisms responsible for the divergent effects of the lard and linoleate-enriched diets merit further investigation but may involve diet-induced changes in the content and/or composition of cardiolipin in the heart.


Assuntos
Gorduras na Dieta/farmacologia , Insuficiência Cardíaca/dietoterapia , Insuficiência Cardíaca/mortalidade , Hipertensão/dietoterapia , Hipertensão/mortalidade , Ácido Linoleico/farmacologia , Ração Animal , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiolipinas/metabolismo , Dieta com Restrição de Gorduras , Carboidratos da Dieta/farmacologia , Modelos Animais de Doenças , Ecocardiografia , Ácidos Graxos/sangue , Insuficiência Cardíaca/diagnóstico por imagem , Estimativa de Kaplan-Meier , Masculino , Miocárdio/metabolismo , Ratos , Ratos Mutantes , Tromboxanos/metabolismo
13.
Hypertension ; 51(4): 1096-102, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18259016

RESUMO

Exercise training improves functional capacity and quality of life in patients with heart failure. However, the long-term effects of exercise on mortality associated with hypertensive heart disease have not been well defined. In the present study, we investigated the effect of low-intensity exercise training on disease progression and survival in female spontaneously hypertensive heart failure rats. Animals with severe hypertension (16 months old) were treadmill trained (14.5 m/min, 45 min/d, 3 d/wk) until they developed terminal heart failure or were euthanized because of age-related complications. Exercise delayed mortality resulting from heart failure (P<0.001) and all causes (P<0.05) and transiently attenuated the systolic hypertension and contractile dysfunction observed in the sedentary animals but had no effect on cardiac morphology or contractile function in end-stage heart failure. Training had no effect on terminal myocardial protein expression of antioxidant enzymes, calcium handling proteins, or myosin heavy chain isoforms but was associated with higher cytochrome oxidase activity in cardiac mitochondria (P<0.05) and a greater mitochondrial content of cardiolipin, a phospholipid that is essential for optimal mitochondrial energy metabolism. In conclusion, low-intensity exercise training significantly delays the onset of heart failure and improves survival in female hypertensive heart failure rats without eliciting sustained improvements in blood pressure, cardiac function, or expression of several myocardial proteins associated with the cardiovascular benefits of exercise. The effects of exercise on cytochrome oxidase and cardiolipin provide novel evidence that training may improve prognosis in hypertensive heart disease by preserving mitochondrial energy metabolism.


Assuntos
Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Hipertensão/mortalidade , Hipertensão/terapia , Condicionamento Físico Animal/fisiologia , Animais , Antioxidantes/metabolismo , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/metabolismo , Cardiolipinas/metabolismo , Ecocardiografia , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Estimativa de Kaplan-Meier , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos SHR
14.
J Appl Physiol (1985) ; 103(6): 1979-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17916671

RESUMO

The use of short-term (1-5 days) treadmill running is becoming increasingly common as a model to study physiological adaptations following the exercise. Although the beneficial effects of acute exercise seem clear, a paucity of data exist describing potential markers of stress in response to forced running. We subjected male and female Sprague-Dawley rats to 0, 1, 2, 5, or 10 days of treadmill running. Twenty-four to 32 h after the last bout of exercise animals were killed and examined for training-induced changes in several physiological variables. No effect of skeletal citrate synthase activity was observed in the male animals after any duration, and only at 10 days of running did females show a significant increase in citrate synthase. Myocardial heat shock protein 72 (HSP72) content was higher in male rats than female rats, and exercise led to increased HSP72 in both sexes, although the time course was different between males and females. Animals displayed several markers of systemic stress in response to the treadmill running, and this was done in a sex-dependent manner. Serum corticosterone was significantly elevated in both sexes 24 h after exercise in three of four exercise groups. Corticosterone-binding globulin was higher in females, and decreased after running in female rats. Body and spleen weights decreased in males (but not females) in response to the exercise training, and running did not alter adrenal gland weights in either sex. These data indicate that in response to short-term treadmill running both male and female rats show signs of systemic stress, but that the pattern of changes occurs in a sex-specific manner.


Assuntos
Adaptação Fisiológica , Teste de Esforço , Esforço Físico , Estresse Fisiológico/metabolismo , Glândulas Suprarrenais/patologia , Animais , Atrofia , Peso Corporal , Citrato (si)-Sintase/metabolismo , Corticosterona/sangue , Feminino , Proteínas de Choque Térmico HSP72/metabolismo , Hipertrofia , Masculino , Modelos Animais , Músculo Esquelético/enzimologia , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Baço/patologia , Estresse Fisiológico/patologia , Estresse Fisiológico/fisiopatologia , Fatores de Tempo , Transcortina/metabolismo , Regulação para Cima
16.
J Appl Physiol (1985) ; 103(5): 1894-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17556492

RESUMO

Emerging evidence indicates that exercise training can provide significant protection against myocardial ischemia-reperfusion injury. In this brief review, we provide a synthesis of current literature in the field and summarize the findings to date. Our intent is to identify the unique elements of cardioprotection acquired by exercise, and to illustrate what distinguishes this physiological acquisition of cardioprotection from all other known types of acquired cardioprotection. Finally, we point to future directions for research in this exciting area.


Assuntos
Exercício Físico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Cálcio/metabolismo , Humanos , Canais KATP/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Transdução de Sinais
17.
J Lipid Res ; 48(7): 1559-70, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17426348

RESUMO

The mitochondrial phospholipid cardiolipin is required for optimal mitochondrial respiration. In this study, cardiolipin molecular species and cytochrome oxidase (COx) activity were studied in interfibrillar (IF) and subsarcolemmal (SSL) cardiac mitochondria from Spontaneously Hypertensive Heart Failure (SHHF) and Sprague-Dawley (SD) rats throughout their natural life span. Fisher Brown Norway (FBN) and young aortic-constricted SHHF rats were also studied to investigate cardiolipin alterations in aging versus pathology. Additionally, cardiolipin was analyzed in human hearts explanted from patients with dilated cardiomyopathy. A loss of tetralinoleoyl cardiolipin (L(4)CL), the predominant species in the healthy mammalian heart, occurred during the natural or accelerated development of heart failure in SHHF rats and humans. L(4)CL decreases correlated with reduced COx activity (no decrease in protein levels) in SHHF cardiac mitochondria, but with no change in citrate synthase (a matrix enzyme) activity. The fraction of cardiac cardiolipin containing L(4)CL became much lower with age in SHHF than in SD or FBN mitochondria. In summary, a progressive loss of cardiac L(4)CL, possibly attributable to decreased remodeling, occurs in response to chronic cardiac overload, but not aging alone, in both IF and SSL mitochondria. This may contribute to mitochondrial respiratory dysfunction during the pathogenesis of heart failure.


Assuntos
Cardiolipinas/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
18.
Am J Physiol Heart Circ Physiol ; 293(1): H246-59, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17337597

RESUMO

Potential regulation of two factors linked to physiological outcomes with left ventricular (LV) hypertrophy, resistance to apoptosis, and matching of metabolic capacity, by the transcription factor cyclic-nucleotide regulatory element binding protein (CREB), was examined in the two models of physiological LV hypertrophy: involuntary treadmill running of female Sprague-Dawley rats and voluntary exercise wheel running in female C57Bl/6 mice. Comparative studies were performed in the models of pathological LV hypertrophy and failure: the spontaneously hypertension heart failure (SHHF) rat and the hypertrophic cardiomyopathy (HCM) transgenic mouse, a model of familial idiopathic cardiomyopathy. Activating CREB serine-133 phosphorylation was decreased early in remodeling in response to both physiological (decreased 50-80%) and pathological (decreased 60-80%) hypertrophic stimuli. Restoration of LV CREB phosphorylation occurred concurrent with completion of physiological hypertrophy (94% of sedentary control), but remained decreased (by 90%) during pathological hypertrophy. In all models of hypertrophy, CREB phosphorylation/activation demonstrated strong positive correlations with 1) expression of the anti-apoptotic protein bcl-2 (a CREB-dependent gene) and subsequent reductions in the activation of caspase 9 and caspase 3; 2) expression of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1; a major regulator of mitochondrial content and respiratory capacity), and 3) LV mitochondrial respiratory rates and mitochondrial protein content. Exercise-induced increases in LV mitochondrial respiratory capacity were commensurate with increases observed in LV mass, as previously reported in the literature. Exercise training of SHHF rats and HCM mice in LV failure improved cardiac phenotype, increased CREB activation (31 and 118%, respectively), increased bcl-2 content, improved apoptotic status, and enhanced PGC-1 content and mitochondrial gene expression. Adenovirus-mediated expression of constitutively active CREB in neonatal rat cardiac recapitulated exercise-induced upregulation of PGC-1 content and mitochondrial oxidative gene expression. These data support a model wherein CREB contributes to physiological hypertrophy by enhancing expression of genes important for efficient oxidative capacity and resistance to apoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Células Cultivadas , Teste de Esforço , Hipertensão , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Oxirredução , Ratos , Ratos Endogâmicos SHR , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia
19.
Am J Physiol Heart Circ Physiol ; 292(5): H2432-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17237239

RESUMO

The present study was conducted to determine whether the infarct sparing effect of short-term exercise is dependent on the operation of the myocardial sarcolemmal ATP-sensitive K(+) (K(ATP)) channel. Adult male and female Sprague-Dawley rats were exercised on a motorized treadmill for 5 days. Twenty-four hours following the training or sedentary period, hearts were isolated and exposed to 1 h of regional ischemia followed by 2 h of reperfusion on a modified Langendorf apparatus in the presence or absence of the sarcolemmal K(ATP) channel antagonist HMR-1098 (30 microM). Following the ischemia-reperfusion protocol, infarct size was determined as a percentage of the total ischemic zone at risk (ZAR). Short-term exercise reduced infarct size by 24% in males (32 +/- 2% of ZAR; P < 0.01) and by 18% in females (26 +/- 2% of ZAR; P < 0.05). Sarcolemmal K(ATP) channel blockade abolished the training-induced cardioprotection in both males and females, increasing infarct size to 43 +/- 3% and 52 +/- 4% of ZAR, respectively. In the absence of HMR-1098, infarct size was significantly lower in sedentary females than in males (33 +/- 4% vs. 42 +/- 2% of ZAR, respectively; P < 0.01). However, the presence of HMR-1098 abolished this sex difference, increasing infarct size by 58% in the sedentary females (P < 0.01) but having no effect on infarct size in sedentary males. This study demonstrates that the sex-specific and exercise-acquired resistance to myocardial ischemia-reperfusion injury is dependent on sarcolemmal K(ATP) activity during ischemia.


Assuntos
Benzamidas/farmacologia , Terapia por Exercício/métodos , Coração/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Condicionamento Físico Animal/métodos , Canais de Potássio/metabolismo , Animais , Feminino , Coração/efeitos dos fármacos , Masculino , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...