Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(6): 993-1007, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36535768

RESUMO

Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014).SIGNIFICANCE STATEMENT ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.


Assuntos
Córtex Visual , Masculino , Animais , Feminino , Humanos , Córtex Visual/fisiologia , Visão Ocular , Campos Visuais , Sensibilidades de Contraste , Vias Visuais/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia
2.
Tetrahedron ; 74(52): 7408-7420, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31289413

RESUMO

Pyrroles and quinolones represent core structures, which are routinely found in both natural and synthetic bioactive substances. Consequently, the development of efficient and regiospecific methods for the preparation of such heterocycles with unique functionality is of some importance. We describe herein the regiospecific synthesis of 1,2,3,4-tetrasubstituted pyrroles containing polar substituents and such products are prepared from vinylogous carbamates and vinylogous aminonitriles. We also describe the regiospecific synthesis of 3-aryl containing 1,3,6trisubstituted quinolones from vinylogous carbamates. The use of an amine exchange reaction to prepare precursors for the pyrrole and quinolone forming cyclizations represents a key factor in the strategy.

3.
Bioorg Med Chem ; 25(12): 3206-3214, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433513

RESUMO

New microtubule depolymerizing agents with potent cytotoxic activities have been prepared with a 5-cyano or 5-oximino group attached to a pyrrole core. The utilization of ortho activation of a bromopyrrole ester to facilitate successful Suzuki-Miyaura cross-coupling reactions was a key aspect of the synthetic methodology. This strategy allows for control of regiochemistry with the attachment of four completely different groups at the 2, 3, 4 and 5 positions of the pyrrole scaffold. Biological evaluations and molecular modeling studies are reported for these examples.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pirróis/química , Pirróis/farmacologia , Animais , Antineoplásicos/síntese química , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Pirróis/síntese química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...