Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Clin Genet ; 105(3): 294-301, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044714

RESUMO

Calmodulin-binding transcriptional activator 1 (CAMTA1) is highly expressed in the brain and plays a role in cell cycle regulation, cell differentiation, regulation of long-term memory, and initial development, maturation, and survival of cerebellar neurons. The existence of human neurological phenotypes, including cerebellar dysfunction with variable cognitive and behavioral abnormalities (CECBA), associated with CAMTA1 variants, has further supported its role in brain functions. In this study, we phenotypically and molecularly characterize the largest cohort of individuals (n = 26) with 23 novel CAMTA1 variants (frameshift-7, nonsense-6, splicing-1, initiation codon-1, missense-5, and intragenic deletions-3) and compare the findings with all previously reported cases (total = 53). We show that the most notable phenotypic findings are developmental delay/intellectual disability, unsteady or uncoordinated gait, hypotonia, behavioral problems, and eye abnormalities. In addition, there is a high incidence of dysarthria, dysgraphia, microcephaly, gastrointestinal abnormalities, sleep difficulties, and nonspecific brain MRI findings; a few of which have been under-reported. More than one third of the variants in this cohort were inherited from an asymptomatic or mildly affected parent suggesting reduced penetrance and variable expressivity. Our cohort provides a comprehensive characterization of the spectrum of phenotypes and genotypes among individuals with CECBA and the large data will facilitate counseling and formulating management plans and surveillance recommendations for these individuals.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Genótipo , Deficiência Intelectual/genética , Fenótipo , Transativadores/genética , Fatores de Transcrição/genética
3.
HGG Adv ; 3(3): 100102, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35469323

RESUMO

Loss-of-function variants in PHD Finger Protein 8 (PHF8) cause Siderius X-linked intellectual disability (ID) syndrome, hereafter called PHF8-XLID. PHF8 is a histone demethylase that is important for epigenetic regulation of gene expression. PHF8-XLID is an under-characterized disorder with only five previous reports describing different PHF8 predicted loss-of-function variants in eight individuals. Features of PHF8-XLID include ID and craniofacial dysmorphology. In this report we present 16 additional individuals with PHF8-XLID from 11 different families of diverse ancestry. We also present five individuals from four different families who have ID and a variant of unknown significance in PHF8 with no other explanatory variant in another gene. All affected individuals exhibited developmental delay and all but two had borderline to severe ID. Of the two who did not have ID, one had dyscalculia and the other had mild learning difficulties. Craniofacial findings such as hypertelorism, microcephaly, elongated face, ptosis, and mild facial asymmetry were found in some affected individuals. Orofacial clefting was seen in three individuals from our cohort, suggesting that this feature is less common than previously reported. Autism spectrum disorder and attention deficit hyperactivity disorder, which were not previously emphasized in PHF8-XLID, were frequently observed in affected individuals. This series expands the clinical phenotype of this rare ID syndrome caused by loss of PHF8 function.

4.
Neurol Genet ; 7(6): e613, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34790866

RESUMO

BACKGROUND AND OBJECTIVES: Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. METHODS: Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. RESULTS: A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. DISCUSSION: The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.

5.
Genes (Basel) ; 12(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440449

RESUMO

ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses.


Assuntos
Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Face/anormalidades , Feminino , Regulação da Expressão Gênica/genética , Deformidades Congênitas da Mão/epidemiologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
6.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402213

RESUMO

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Assuntos
Consanguinidade , Epilepsia/genética , Genótipo , Microcefalia/genética , Fenótipo , Proteínas de Ciclo Celular/genética , Criança , Epilepsia/epidemiologia , Epilepsia/patologia , Feminino , Frequência do Gene , Heterogeneidade Genética , Humanos , Incidência , Masculino , Microcefalia/complicações , Microcefalia/patologia , Proteínas do Tecido Nervoso/genética
7.
Hum Mutat ; 42(7): 827-834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942450

RESUMO

Mental deficiency, epilepsy, hypogonadism, microcephaly, and obesity syndrome is a severe X-linked syndrome caused by pathogenic variants in EIF2S3. The gene encodes the γ subunit of the eukaryotic translation initiation factor-2, eIF2, essential for protein translation. A recurrent frameshift variant is described in severely affected patients while missense variants usually cause a moderate phenotype. We identified a novel missense variant (c.433A>G, p.(Met145Val)) in EIF2S3 in a mildly affected patient. Studies on zebrafish confirm the pathogenicity of this novel variant and three previously published missense variants. CRISPR/Cas9 knockout of eif2s3 in zebrafish embryos recapitulate the human microcephaly and show increased neuronal cell death. Abnormal high glucose levels were identified in mutant embryos, caused by beta cell and pancreatic progenitor deficiency, not related to apoptosis. Additional studies in patient-derived fibroblasts did not reveal apoptosis. Our results provide new insights into disease physiopathology, suggesting tissue-dependent mechanisms.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Peixe-Zebra , Animais , Genitália , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Fenótipo , Peixe-Zebra/genética
8.
Clin Genet ; 98(1): 43-55, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279304

RESUMO

X-linked intellectual disability (XLID) is a genetically heterogeneous condition involving more than 100 genes. To date, 35 pathogenic variants have been reported in the lysine specific demethylase 5C (KDM5C) gene. KDM5C variants are one of the major causes of moderate to severe XLID. Affected males present with short stature, distinctive facial features, behavioral disorders, epilepsy, and spasticity. For most of these variants, related female carriers have been reported, but phenotypic descriptions were poor. Here, we present clinical and molecular features of 19 females carrying 10 novel heterozygous variants affecting KDM5C function, including five probands with de novo variants. Four heterozygous females were asymptomatic. All affected individuals presented with learning disabilities or ID (mostly moderate), and four also had a language impairment mainly affecting expression. Behavioral disturbances were frequent, and endocrine disorders were more frequent in females. In conclusion, our findings provide evidence of the role of KDM5C in ID in females highlighting the increasing implication of XLID genes in females, even in sporadic affected individuals. Disease expression of XLID in females should be taken into consideration for genetic counseling.


Assuntos
Epilepsia/genética , Genes Ligados ao Cromossomo X/genética , Variação Genética/genética , Histona Desmetilases/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adulto , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Fenótipo , Adulto Jovem
10.
Eur J Med Genet ; 61(12): 733-737, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29883675

RESUMO

Biallelic mutations in the RTTN gene have been reported in association with microcephaly, short stature, developmental delay and malformations of cortical development. RTTN mutations have previously shown to link aberrant ciliary function with abnormal development and organization of the human cerebral cortex. We here report three individuals from two unrelated families with novel mutations in the RTTN gene. The phenotype consisted of microcephaly, short stature, pachygyria or polymicrogyria, colpocephaly, hypoplasia of the corpus callosum and superior vermis. These findings provide further confirmation of the phenotype related to pathogenic variants in RTTN.


Assuntos
Encefalopatias/genética , Proteínas de Transporte/genética , Nanismo/genética , Ventrículos Laterais/anormalidades , Microcefalia/genética , Adolescente , Adulto , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Encefalopatias/patologia , Proteínas de Ciclo Celular , Córtex Cerebral/patologia , Criança , Pré-Escolar , Corpo Caloso/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Nanismo/patologia , Feminino , Humanos , Lactente , Ventrículos Laterais/patologia , Masculino , Microcefalia/patologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Adulto Jovem
11.
Eur J Med Genet ; 61(8): 442-450, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29510240

RESUMO

Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.


Assuntos
Cerebelo/anormalidades , Proteínas do Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/genética , Mutação , Malformações do Sistema Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Adolescente , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Malformações do Sistema Nervoso/patologia , Linhagem
12.
Mol Genet Metab ; 123(4): 463-471, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29478817

RESUMO

Creatine transporter is currently the focus of renewed interest with emerging roles in brain neurotransmission and physiology, and the bioenergetics of cancer metastases. We here report on amendments of a standard creatine uptake assay which might help clinical chemistry laboratories to extend their current range of measurements of creatine and metabolites in body fluids to functional enzyme explorations. In this respect, short incubation times and the use of a stable-isotope-labeled substrate (D3-creatine) preceded by a creatine wash-out step from cultured fibroblast cells by removal of fetal bovine serum (rich in creatine) from the incubation medium are recommended. Together, these measures decreased, by a first order of magnitude, creatine concentrations in the incubation medium at the start of creatine-uptake studies and allowed to functionally discriminate between 4 hemizygous male and 4 heterozygous female patients with X-linked SLC6A8 deficiency, and between this cohort of eight patients and controls. The functional assay corroborated genetic diagnosis of SLC6A8 deficiency. Gene anomalies in our small cohort included splicing site (c.912G > A [p.Ile260_Gln304del], c.778-2A > G and c.1495 + 2 T > G), substitution (c.407C > T) [p.Ala136Val] and deletion (c.635_636delAG [p.Glu212Valfs*84] and c.1324delC [p.Gln442Lysfs*21]) variants with reduced creatine transporter function validating their pathogenicity, including that of a previously unreported c.1324delC variant. The present assay adaptations provide an easy, reliable and discriminative manner for exploring creatine transporter activity and disease variations. It might apply to drug testing or other evaluations in the genetic and metabolic horizons covered by the emerging functions of creatine and its transporter, in a way, however, requiring and completed by additional studies on female patients and blood-brain barrier permeability properties of selected compounds. As a whole, the proposed assay of creatine transporter positively adds to currently existing measurements of this transporter activity, and determining on a large scale the extent of its exact suitability to detect female patients should condition in the future its transfer in clinical practice.


Assuntos
Encefalopatias Metabólicas Congênitas/metabolismo , Creatina/deficiência , Fibroblastos/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Adolescente , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Creatina/genética , Creatina/metabolismo , Feminino , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Prognóstico
13.
Eur J Hum Genet ; 26(1): 64-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180823

RESUMO

Whole-gene duplications and missense variants in the HUWE1 gene (NM_031407.6) have been reported in association with intellectual disability (ID). Increased gene dosage has been observed in males with non-syndromic mild to moderate ID with speech delay. Missense variants reported previously appear to be associated with severe ID in males and mild or no ID in obligate carrier females. Here, we report the largest cohort of patients with HUWE1 variants, consisting of 14 females and 7 males, with 15 different missense variants and one splice site variant. Clinical assessment identified common clinical features consisting of moderate to profound ID, delayed or absent speech, short stature with small hands and feet and facial dysmorphism consisting of a broad nasal tip, deep set eyes, epicanthic folds, short palpebral fissures, and a short philtrum. We describe for the first time that females can be severely affected, despite preferential inactivation of the affected X chromosome. Three females with the c.329 G > A p.Arg110Gln variant, present with a phenotype of mild ID, specific facial features, scoliosis and craniosynostosis, as reported previously in a single patient. In these females, the X inactivation pattern appeared skewed in favour of the affected transcript. In summary, HUWE1 missense variants may cause syndromic ID in both males and females.


Assuntos
Genes Dominantes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Criança , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto , Síndrome
14.
J Med Genet ; 54(9): 613-623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735298

RESUMO

BACKGROUND: Mutations in forkhead box protein P1 (FOXP1) cause intellectual disability (ID) and specific language impairment (SLI), with or without autistic features (MIM: 613670). Despite multiple case reports no specific phenotype emerged so far. METHODS: We correlate clinical and molecular data of 25 novel and 23 previously reported patients with FOXP1 defects. We evaluated FOXP1 activity by an in vitro luciferase model and assessed protein stability in vitro by western blotting. RESULTS: Patients show ID, SLI, neuromotor delay (NMD) and recurrent facial features including a high broad forehead, bent downslanting palpebral fissures, ptosis and/or blepharophimosis and a bulbous nasal tip. Behavioural problems and autistic features are common. Brain, cardiac and urogenital malformations can be associated. More severe ID and NMD, sensorineural hearing loss and feeding difficulties are more common in patients with interstitial 3p deletions (14 patients) versus patients with monogenic FOXP1 defects (34 patients). Mutations result in impaired transcriptional repression and/or reduced protein stability. CONCLUSIONS: FOXP1-related ID syndrome is a recognisable entity with a wide clinical spectrum and frequent systemic involvement. Our data will be helpful to evaluate genotype-phenotype correlations when interpreting next-generation sequencing data obtained in patients with ID and/or SLI and will guide clinical management.


Assuntos
Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Transtorno do Espectro Autista/genética , Face/anormalidades , Feminino , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Transtornos da Linguagem/genética , Masculino , Transtornos das Habilidades Motoras/genética , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estabilidade Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Síndrome , Transcrição Gênica
15.
Eur J Med Genet ; 59(10): 522-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27465203

RESUMO

Mutations in MECP2 (MIM #312750), located on Xq28 and encoding a methyl CpG binding protein, are classically associated with Rett syndrome in female patients, with a lethal effect in hemizygous males. However, MECP2 mutations have already been reported in surviving males with severe neonatal-onset encephalopathy, or with X-linked intellectual disability associated with psychosis, pyramidal signs, parkinsonian features and macro-orchidism (PPM-X syndrome; MIM3 #300055). Here we report on the identification of the p.Ala140Val mutation in the MECP2 gene in 4 males and 3 females of a large Caucasian family affected with X-linked intellectual disability. Females present with mild cognitive impairment and speech difficulties. Males have moderate intellectual disability, impaired language development, friendly behavior, slowly progressive spastic paraparesis and dystonic movements of the hands. Two of them show microcephaly. The p.Ala140Val mutation is recurrent, as it was already described in 4 families with X-linked mental retardation and in three sporadic male patients with intellectual disability. We further delineate the phenotype associated with the p.Ala140Val mutation, illustrating a variable expressivity even within a given family, and we compare our patients with previous reported cases in the literature.


Assuntos
Ataxia/genética , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Microcefalia/genética , Transtornos da Motilidade Ocular/genética , Síndrome de Rett/genética , Adulto , Idoso , Ataxia/complicações , Ataxia/fisiopatologia , Epilepsia/complicações , Epilepsia/fisiopatologia , Feminino , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Microcefalia/complicações , Microcefalia/fisiopatologia , Pessoa de Meia-Idade , Espasticidade Muscular/complicações , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Transtornos da Motilidade Ocular/complicações , Transtornos da Motilidade Ocular/fisiopatologia , Linhagem , Fenótipo , Síndrome de Rett/complicações , Síndrome de Rett/fisiopatologia
16.
Am J Med Genet A ; 170(11): 2927-2933, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27333055

RESUMO

X-chromosome exome sequencing was performed to identify the genetic cause of syndromic intellectual disability in two unrelated families with suspected X-linked inheritance. In both families, affected males presented with severe intellectual disability, microcephaly, growth retardation, and epilepsy. A missense mutation (c.777T>G p.(Ile259Met)) and a frameshift mutation (c.1394_1397del p.(Ile465Serfs*4)) were identified in the EIF2S3 gene in the hemizygous state in affected patients, and in the heterozygous states female obligate carriers. A missense mutation in EIF2S3, coding for the gamma-subunit of the translation initiation factor eIF2, was reported once in a family presenting with similar clinical features. Morpholino-based knockdown of the zebrafish EIF2S3 ortholog (eif2s3) recapitulates the human microcephaly and short stature phenotype, supporting the pathogenicity of the identified variants. Our data confirm that EIF2S3 mutation is implicated in a rare, but recognizable, form of syndromic intellectual disability. © 2016 Wiley Periodicals, Inc.


Assuntos
Epilepsia/genética , Fator de Iniciação 2 em Eucariotos/genética , Estudos de Associação Genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Adolescente , Alelos , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Epilepsia/diagnóstico , Exoma , Fácies , Feminino , Técnicas de Silenciamento de Genes , Genes Ligados ao Cromossomo X , Genótipo , Transtornos do Crescimento/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
17.
Am J Hum Genet ; 97(6): 790-800, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637975

RESUMO

Circumferential skin creases Kunze type (CSC-KT) is a specific congenital entity with an unknown genetic cause. The disease phenotype comprises characteristic circumferential skin creases accompanied by intellectual disability, a cleft palate, short stature, and dysmorphic features. Here, we report that mutations in either MAPRE2 or TUBB underlie the genetic origin of this syndrome. MAPRE2 encodes a member of the microtubule end-binding family of proteins that bind to the guanosine triphosphate cap at growing microtubule plus ends, and TUBB encodes a ß-tubulin isotype that is expressed abundantly in the developing brain. Functional analyses of the TUBB mutants show multiple defects in the chaperone-dependent tubulin heterodimer folding and assembly pathway that leads to a compromised yield of native heterodimers. The TUBB mutations also have an impact on microtubule dynamics. For MAPRE2, we show that the mutations result in enhanced MAPRE2 binding to microtubules, implying an increased dwell time at microtubule plus ends. Further, in vivo analysis of MAPRE2 mutations in a zebrafish model of craniofacial development shows that the variants most likely perturb the patterning of branchial arches, either through excessive activity (under a recessive paradigm) or through haploinsufficiency (dominant de novo paradigm). Taken together, our data add CSC-KT to the growing list of tubulinopathies and highlight how multiple inheritance paradigms can affect dosage-sensitive biological systems so as to result in the same clinical defect.


Assuntos
Encéfalo/metabolismo , Cútis Laxa/congênito , Hamartoma/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mutação , Anormalidades da Pele/genética , Pele/metabolismo , Tubulina (Proteína)/genética , Adolescente , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Cútis Laxa/genética , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos , Hamartoma/metabolismo , Hamartoma/patologia , Haploinsuficiência , Humanos , Lactente , Padrões de Herança , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patologia , Dobramento de Proteína , Multimerização Proteica , Pele/crescimento & desenvolvimento , Pele/patologia , Anormalidades da Pele/metabolismo , Anormalidades da Pele/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem , Peixe-Zebra
18.
Eur J Med Genet ; 57(5): 212-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24613578

RESUMO

Cold-induced sweating syndrome (CISS) is a rare autosomal recessive disorder characterized by profuse sweating at cold environmental temperatures, facial dysmorphism and skeletal features. The infantile presentation of CISS, referred to as Crisponi syndrome (CS), is characterized by facial muscular contractures in response to slight tactile stimuli or during crying, by life-threatening feeding difficulties caused by suck and swallow inabilities, and by intermittent hyperthermia. High febrile crises can lead to death within the first months of life. In preadolescence, surviving patients develop kyphoscoliosis and abnormal sweating. CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 in more than 90 percent of patients (CISS1) and by mutations in CLCF1 in the remaining patients (CISS2). It is now well demonstrated that all patients with an infantile-onset CS will develop CISS, confirming that CS and CISS are not "allelic disorders" but the same clinical entity described at different ages of affected patients. Here we report on a Turkish patient with a phenotype consistent with CS/CISS1 and a nonsense homozygous mutation (c.829C>T, p.R277X) in the CRLF1 gene. This mutation has already been reported in another Turkish patient with CS/CISS1.


Assuntos
Febre/diagnóstico , Deformidades Congênitas da Mão/diagnóstico , Receptores de Citocinas/genética , Trismo/congênito , Sequência de Bases , Consanguinidade , Análise Mutacional de DNA , Morte Súbita , Fácies , Febre/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/genética , Homozigoto , Humanos , Hiperidrose , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Contração Muscular/genética , Mutação de Sentido Incorreto , Trismo/diagnóstico , Trismo/genética
19.
Orphanet J Rare Dis ; 8: 63, 2013 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-23621943

RESUMO

BACKGROUND: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. METHODS AND RESULTS: Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations. CONCLUSIONS: This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.


Assuntos
Anormalidades Múltiplas/genética , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/genética , Éxons/genética , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
20.
Eur J Med Genet ; 54(2): 177-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21167329

RESUMO

Interstitial deletions of the long arm of chromosome 3 are rare and detailed genotype-phenotype correlations are not well established. We report on the clinical, cytogenetic and molecular findings of a 5-year-old patient with a de novo interstitial deletion from 3q25.1 to 3q25.32. Clinical features include relative microcephaly, developmental delay and facial dysmorphism with a coarse face, ptosis, synophrys, epicanthic folds, broad nasal bridge, long philtrum, large mouth with full lips, dysplastic and low-set ears. Revealed by conventional banding techniques, the deleted region of 8.9 Mb was confirmed by fluorescent in situ hybridization (FISH) analyses and array comparative genomic hybridization (array-CGH). To our knowledge, this is the smallest interstitial deletion reported in the 3q25 region. The phenotype of our patient is compared with the 10 previously reported cases implicating the 3q25 region.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Face/anormalidades , Pré-Escolar , Hibridização Genômica Comparativa , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...