Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 31(4): 1000-13, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22193718

RESUMO

ß-Thymosin (ßT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-ß4, or enhance motility by directing polarized filament assembly like Ciboulot ßT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-ß4, Ciboulot, TetraThymosinß and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-ß4. Functionally different ßT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long ßT and WH2 domains. The results open perspectives for elucidating the functions of ßT/WH2 domains in other modular proteins.


Assuntos
Actinas/metabolismo , Timosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Timosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA