Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(5): 4118-4130, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261768

RESUMO

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.

2.
Nano Lett ; 22(6): 2561-2568, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157466

RESUMO

The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe2 homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 1012 cm-2. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.


Assuntos
Elementos de Transição , Eletrônica , Elétrons
3.
Nat Commun ; 13(1): 542, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087038

RESUMO

Excitons play a dominant role in the optoelectronic properties of atomically thin van der Waals (vdW) semiconductors. These excitons are amenable to on-demand engineering with diverse control knobs, including dielectric screening, interlayer hybridization, and moiré potentials. However, external stimuli frequently yield heterogeneous excitonic responses at the nano- and meso-scales, making their spatial characterization with conventional diffraction-limited optics a formidable task. Here, we use a scattering-type scanning near-field optical microscope (s-SNOM) to acquire exciton spectra in atomically thin transition metal dichalcogenide microcrystals with previously unattainable 20 nm resolution. Our nano-optical data revealed material- and stacking-dependent exciton spectra of MoSe2, WSe2, and their heterostructures. Furthermore, we extracted the complex dielectric function of these prototypical vdW semiconductors. s-SNOM hyperspectral images uncovered how the dielectric screening modifies excitons at length scales as short as few nanometers. This work paves the way towards understanding and manipulation of excitons in atomically thin layers at the nanoscale.

4.
ACS Nano ; 15(9): 14725-14731, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34520661

RESUMO

Two-dimensional transition metal dichalcogenides offer a fascinating platform for creating van der Waals heterojunctions with exciting physical properties. Because of their typical type-II band alignment, photoexcited electrons and holes can separate via interfacial charge transfer. Furthermore, the relative crystallographic alignment of the individual layers in these heterostructures represents an important degree of freedom. Based on both effects, various fascinating ideas for applications in optoelectronics and valleytronics have been suggested. Despite its utmost importance for the design and efficiency of potential devices, the nature and the dynamics of ultrafast charge transfer are not yet well understood. This is mainly because the charge transfer can be surprisingly fast, usually faster than the temporal resolution of previous experimental approaches. Here, we apply time- and polarization-resolved second-harmonic imaging microscopy to investigate the charge-transfer dynamics for three MoS2/WSe2 heterostructures with different stacking angles at a previously unattainable time resolution of ≈10 fs. For 1.70 eV excitation energy, electron transfer from WSe2 to MoS2 is found to depend considerably on the stacking angle with the fastest transfer time observed to be as short as 12 fs. At 1.85 eV excitation energy, ultrafast hole transfer from MoS2 to hybridized states at the Γ-point and to the K-points of WSe2 has to be considered. Surprisingly, the corresponding decay dynamics show only a minor stacking-angle dependence indicating that radiative recombination of momentum-space indirect Γ-K excitons becomes the dominant decay route for all samples.

5.
Opt Lett ; 46(15): 3572-3575, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329227

RESUMO

By sampling terahertz waveforms emitted from InAs surfaces, we reveal how the entire, realistic geometry of typical near-field probes drastically impacts the broadband electromagnetic fields. In the time domain, these modifications manifest as a shift in the carrier-envelope phase and emergence of a replica pulse with a time delay dictated by the length of the cantilever. This interpretation is fully corroborated by quantitative simulations of terahertz emission nanoscopy based on the finite element method. Our approach provides a solid theoretical framework for quantitative nanospectroscopy and sets the stage for a reliable description of subcycle, near-field microscopy at terahertz frequencies.

6.
Nat Commun ; 11(1): 2167, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358515

RESUMO

The recent discovery of artificial phase transitions induced by stacking monolayer materials at magic twist angles represents a paradigm shift for solid state physics. Twist-induced changes of the single-particle band structure have been studied extensively, yet a precise understanding of the underlying Coulomb correlations has remained challenging. Here we reveal in experiment and theory, how the twist angle alone affects the Coulomb-induced internal structure and mutual interactions of excitons. In homobilayers of WSe2, we trace the internal 1s-2p resonance of excitons with phase-locked mid-infrared pulses as a function of the twist angle. Remarkably, the exciton binding energy is renormalized by up to a factor of two, their lifetime exhibits an enhancement by more than an order of magnitude, and the exciton-exciton interaction is widely tunable. Our work opens the possibility of tailoring quasiparticles in search of unexplored phases of matter in a broad range of van der Waals heterostructures.

7.
Nano Lett ; 18(12): 7515-7523, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419748

RESUMO

Three-dimensional topological insulators (TIs) have attracted tremendous interest for their possibility to host massless Dirac Fermions in topologically protected surface states (TSSs), which may enable new kinds of high-speed electronics. However, recent reports have outlined the importance of band bending effects within these materials, which results in an additional two-dimensional electron gas (2DEG) with finite mass at the surface. TI surfaces are also known to be highly inhomogeneous on the nanoscale, which is masked in conventional far-field studies. Here, we use near-field microscopy in the mid-infrared spectral range to probe the local surface properties of custom-tailored (Bi0.5Sb0.5)2Te3 structures with nanometer precision in all three spatial dimensions. Applying nanotomography and nanospectroscopy, we reveal a few-nanometer-thick layer of high surface conductivity and retrieve its local dielectric function without assuming any model for the spectral response. This allows us to directly distinguish between different types of surface states. An intersubband transition within the massive 2DEG formed by quantum confinement in the bent conduction band manifests itself as a sharp, surface-bound, Lorentzian-shaped resonance. An additional broadband background in the imaginary part of the dielectric function may be caused by the TSS. Tracing the intersubband resonance with nanometer spatial precision, we observe changes of its frequency, likely originating from local variations of doping or/and the mixing ratio between Bi and Sb. Our results highlight the importance of studying the surfaces of these novel materials on the nanoscale to directly access the local optical and electronic properties via the dielectric function.

8.
Nat Commun ; 8(1): 1551, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146907

RESUMO

Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

9.
Nat Nanotechnol ; 12(3): 207-211, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941900

RESUMO

The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene and its heterostructures have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron-hole pairs by ultrashort near-infrared pulses. Here, we design a SiO2/black phosphorus/SiO2 heterostructure in which the surface phonon modes of the SiO2 layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO2, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron-hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∼50 fs and disappears within 5 ps, as the electron-hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA