Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Crystallogr ; 56(Pt 5): 1361-1370, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791355

RESUMO

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.

2.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828292

RESUMO

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

3.
J Vis Exp ; (193)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939230

RESUMO

Understanding the structure-function relationships of macromolecules, such as proteins, at the molecular level is vital for biomedicine and modern drug discovery. To date, X-ray crystallography remains the most successful method for solving three-dimensional protein structures at atomic resolution. With recent advances in serial crystallography, either using X-ray free electron lasers (XFELs) or synchrotron light sources, protein crystallography has progressed to the next frontier, where the ability to acquire time-resolved data provides important mechanistic insights into the behavior of biological molecules at room temperature. This protocol describes a straightforward high-throughput (HTP) workflow for screening crystallization conditions through the use of a 96-well dialysis plate. These plates follow the Society for Biomolecular Screening (SBS) standard and can be easily set up using any standard crystallization laboratory. Once optimal conditions are identified, large quantities of crystals (hundreds of microcrystals) can be produced using the dialyzer. To validate the robustness and versatility of this approach, four different proteins were crystallized, including two membrane proteins.


Assuntos
Diálise Renal , Síncrotrons , Microdiálise , Cristalização , Cristalografia por Raios X
4.
5.
Front Mol Biosci ; 9: 890862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651816

RESUMO

Structure-function relationships of biological macromolecules, in particular proteins, provide crucial insights for fundamental biochemistry, medical research and early drug discovery. However, production of recombinant proteins, either for structure determination, functional studies, or to be used as biopharmaceutical products, is often hampered by their instability and propensity to aggregate in solution in vitro. Protein samples of poor quality are often associated with reduced reproducibility as well as high research and production expenses. Several biophysical methods are available for measuring protein aggregation and stability. Yet, discovering and developing means to improve protein behaviour and structure-function integrity remains a demanding task. Here, we discuss workflows that are made possible by adapting established biophysical methods to high-throughput screening approaches. Rapid identification and optimisation of conditions that promote protein stability and reduce aggregation will support researchers and industry to maximise sample quality, stability and reproducibility, thereby reducing research and development time and costs.

6.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 52-58, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981761

RESUMO

Room-temperature diffraction methods are highly desirable for dynamic studies of biological macromolecules, since they allow high-resolution structural data to be collected as proteins undergo conformational changes. For crystals grown in lipidic cubic phase (LCP), an extruder is commonly used to pass a stream of microcrystals through the X-ray beam; however, the sample quantities required for this method may be difficult to produce for many membrane proteins. A more sample-efficient environment was created using two layers of low X-ray transmittance polymer films to mount crystals of the archaerhodopsin-3 (AR3) photoreceptor and room-temperature diffraction data were acquired. By using transparent and opaque polymer films, two structures, one corresponding to the desensitized, dark-adapted (DA) state and the other to the ground or light-adapted (LA) state, were solved to better than 1.9 Šresolution. All of the key structural features of AR3 were resolved, including the retinal chromophore, which is present as the 13-cis isomer in the DA state and as the all-trans isomer in the LA state. The film-sandwich sample environment enables diffraction data to be recorded at room temperature in both illuminated and dark conditions, which more closely approximate those in vivo. This simple approach is applicable to a wide range of membrane proteins crystallized in LCP and light-sensitive samples in general at synchrotron and laboratory X-ray sources.


Assuntos
Proteínas de Membrana/química , Difração de Raios X/métodos , Proteínas Arqueais , Cristalização , Cristalografia por Raios X , Halorubrum/química , Isomerismo , Luz , Lipídeos/química , Fotorreceptores Microbianos , Polímeros , Bombas de Próton , Retina/química , Temperatura , Raios X
7.
Biology (Basel) ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809831

RESUMO

To understand the biological complexity of life, one needs to investigate how biomolecules behave and interact with each other at a molecular level [...].

8.
J Thromb Haemost ; 19(5): 1319-1330, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587773

RESUMO

BACKGROUND: Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES: As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS: Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS: The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS: During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.


Assuntos
Plaquetas/enzimologia , Glucuronidase/metabolismo , Sepse , Células Endoteliais , Glucuronidase/genética , Humanos , Proteômica
9.
Nat Commun ; 12(1): 629, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504778

RESUMO

Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.1 Å and 1.3 Å resolution respectively. We observe significant differences between the two states in the dynamics of water molecules that are coupled via H-bonds to the retinal Schiff Base. Supporting QM/MM calculations reveal how the DA state permits a thermodynamic equilibrium between retinal isomers to be established, and how this same change is prevented in the ground state in the absence of light. We suggest that the different arrangement of internal water networks in AR3 is responsible for the faster photocycle kinetics compared to homologs.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Água/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Isomerismo , Lipídeos/química , Conformação Molecular , Processamento de Proteína Pós-Traducional , Prótons , Retinaldeído/química , Retinaldeído/metabolismo
10.
Methods Mol Biol ; 2208: 189-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32856264

RESUMO

Integral membrane proteins are important drug targets that are critical in supporting many biological processes. Despite that, the study of their structure-function relationships remains a major goal in structural biology, yet progress has been hampered by inherent challenges in the production for stable and homogeneous protein samples. Dynamic light scattering provides a straightforward probe of protein quality in solution, particularly in relation to stability and aggregation. However, the necessity to use large amounts of sample and the low-throughput nature of the analysis remain as major bottlenecks of the technique.Here, we present a protocol for dynamic light scattering measurements that are executed in a fully automated fashion for low-volume samples, in situ. The protocol offers a generic pre-screening method for downstream structural studies of biomolecules using higher-resolution approaches such as X-ray crystallography, electron microscopy, small-angle X-ray scattering, and NMR .


Assuntos
Difusão Dinâmica da Luz/métodos , Proteínas de Membrana/metabolismo , Peptídeos/química , Luz , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
11.
Biology (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202740

RESUMO

Membrane proteins play a crucial role in cell physiology by participating in a variety of essential processes such as transport, signal transduction and cell communication. Hence, understanding their structure-function relationship is vital for the improvement of therapeutic treatments. Over the last decade, based on the development of detergents, amphipoles and styrene maleic-acid lipid particles (SMALPs), remarkable accomplishments have been made in the field of membrane protein structural biology. Nevertheless, there are still many drawbacks associated with protein-detergent complexes, depending on the protein in study or experimental application. Recently, newly developed membrane mimetic systems have become very popular for allowing a structural and functional characterisation of membrane proteins in vitro. The nanodisc technology is one such valuable tool, which provides a more native-like membrane environment than detergent micelles or liposomes. In addition, it is also compatible with many biophysical and biochemical methods. Here we describe the use of in situ dynamic light scattering to accurately and rapidly probe membrane proteins' reconstitution into nanodiscs. The adenosine type 2A receptor (A2AR) was used as a case study.

12.
Biology (Basel) ; 9(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227948

RESUMO

The molecular identity of the mitochondrial pyruvate carrier (MPC) was presented in 2012, forty years after the active transport of cytosolic pyruvate into the mitochondrial matrix was first demonstrated. An impressive amount of in vivo and in vitro studies has since revealed an unexpected interplay between one, two, or even three protein subunits defining different functional MPC assemblies in a metabolic-specific context. These have clear implications in cell homeostasis and disease, and on the development of future therapies. Despite intensive efforts by different research groups using state-of-the-art computational tools and experimental techniques, MPCs' structure-based mechanism remains elusive. Here, we review the current state of knowledge concerning MPCs' molecular structures by examining both earlier and recent studies and presenting novel data to identify the regulatory, structural, and core transport activities to each of the known MPC subunits. We also discuss the potential application of cryogenic electron microscopy (cryo-EM) studies of MPC reconstituted into nanodiscs of synthetic copolymers for solving human MPC2.

13.
Biochem Soc Trans ; 48(6): 2505-2524, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33170253

RESUMO

The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Proteínas de Membrana/química , Animais , Biofísica , Simulação por Computador , Detergentes , Elétrons , Desenho de Equipamento , Halobacterium salinarum/metabolismo , Humanos , Lasers , Maleatos/química , Biologia Molecular , Software , Síncrotrons , Difração de Raios X
14.
Mediators Inflamm ; 2020: 1839762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110395

RESUMO

Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1ß. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.


Assuntos
Citocinas/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sinvastatina/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Lavagem Peritoneal , Células-Tronco
15.
Biology (Basel) ; 9(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092039

RESUMO

Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the E. coli membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis.

16.
Malar J ; 19(1): 234, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611348

RESUMO

BACKGROUND: Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host's response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. METHODS: C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. RESULTS: Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. CONCLUSION: Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Heme Oxigenase-1/farmacologia , Malária/complicações , Proteínas de Membrana/farmacologia , Substâncias Protetoras/farmacologia , Trombocitopenia/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Contagem de Leucócitos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/fisiologia , Trombocitopenia/etiologia
17.
FEBS J ; 287(13): 2797-2807, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808997

RESUMO

Cyclic guanosine 3',5'-monophosphate (cGMP) is an intracellular signalling molecule involved in many sensory and developmental processes. Synthesis of cGMP from GTP is catalysed by guanylate cyclase (GC) in a reaction analogous to cAMP formation by adenylate cyclase (AC). Although detailed structural information is available on the catalytic region of nucleotidyl cyclases (NCs) in various states, these atomic models do not provide a sufficient explanation for the substrate selectivity between GC and AC family members. Detailed structural information on the GC domain in its active conformation is largely missing, and no crystal structure of a GTP-bound wild-type GC domain has been published to date. Here, we describe the crystal structure of the catalytic domain of rhodopsin-GC (RhGC) from Catenaria anguillulae in complex with GTP at 1.7 Å resolution. Our study reveals the organization of a eukaryotic GC domain in its active conformation. We observe that the binding mode of the substrate GTP is similar to that of AC-ATP interaction, although surprisingly not all of the interactions predicted to be responsible for base recognition are present. The structure provides insights into potential mechanisms of substrate discrimination and activity regulation that may be common to all class III purine NCs. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6SIR. ENZYMES: EC4.6.1.2.


Assuntos
Blastocladiomycota/enzimologia , GMP Cíclico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Guanosina Trifosfato/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/química , Guanosina Trifosfato/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
18.
IUCrJ ; 6(Pt 6): 1106-1119, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709066

RESUMO

Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human ß2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins.

19.
Sci Rep ; 9(1): 10379, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316088

RESUMO

Protein stability in detergent or membrane-like environments is the bottleneck for structural studies on integral membrane proteins (IMP). Irrespective of the method to study the structure of an IMP, detergent solubilization from the membrane is usually the first step in the workflow. Here, we establish a simple, high-throughput screening method to identify optimal detergent conditions for membrane protein stabilization. We apply differential scanning fluorimetry in combination with scattering upon thermal denaturation to study the unfolding of integral membrane proteins. Nine different prokaryotic and eukaryotic membrane proteins were used as test cases to benchmark our detergent screening method. Our results show that it is possible to measure the stability and solubility of IMPs by diluting them from their initial solubilization condition into different detergents. We were able to identify groups of detergents with characteristic stabilization and destabilization effects for selected targets. We further show that fos-choline and PEG family detergents may lead to membrane protein destabilization and unfolding. Finally, we determined thenmodynamic parameters that are important indicators of IMP stability. The described protocol allows the identification of conditions that are suitable for downstream handling of membrane proteins during purification.


Assuntos
Detergentes/análise , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/isolamento & purificação , Detergentes/química , Fluorometria , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estabilidade Proteica , Solubilidade/efeitos dos fármacos
20.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137900

RESUMO

Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.


Assuntos
Dicroísmo Circular/métodos , Difusão Dinâmica da Luz/métodos , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Membrana/química , Animais , Humanos , Proteínas de Membrana/metabolismo , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...