Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 4(10): 7102-7114, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36873928

RESUMO

The worldwide outbreak of the coronavirus pandemic (COVID-19) and other emerging infections are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. It is noteworthy that Ag-based semiconductors can help orchestrate several strategies to fight this serious societal issue. In this work, we present the synthesis of α-Ag2WO4, ß-Ag2MoO4, and Ag2CrO4 and their immobilization in polypropylene in the amounts of 0.5, 1.0, and 3.0 wt %, respectively. The antimicrobial activity of the composites was investigated against the Gram-negative bacterium Escherichia coli, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. The best antimicrobial efficiency was achieved by the composite with α-Ag2WO4, which completely eliminated the microorganisms in up to 4 h of exposure. The composites were also tested for the inhibition of SARS-CoV-2 virus, showing antiviral efficiency higher than 98% in just 10 min. Additionally, we evaluated the stability of the antimicrobial activity, resulting in constant inhibition, even after material aging. The antimicrobial activity of the compounds was attributed to the production of reactive oxygen species by the semiconductors, which can induce high local oxidative stress, causing the death of these microorganisms.

2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638557

RESUMO

Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/metabolismo , Adulto , Biologia Computacional , Regulação para Baixo/efeitos dos fármacos , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mapas de Interação de Proteínas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
J Phys Chem B ; 125(38): 10866-10875, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546760

RESUMO

The current unprecedented coronavirus pandemic (COVID-19) is increasingly demanding advanced materials and new technologies to protect us and inactivate SARS-CoV-2. In this research work, we report the manufacture of Ag3PO4 (AP)/polypropylene (PP) composites using a simple method and also reveal their long-term anti-SARS-CoV-2 activity. This composite shows superior antibacterial (against Staphylococcus aureus and Escherichia coli) and antifungal activity (against Candida albicans), thus having potential for a variety of technological applications. The as-manufactured materials were characterized by XRD, Raman spectroscopy, FTIR spectroscopy, AFM, UV-vis spectroscopy, rheology, SEM, and contact angle to confirm their structural integrity. Based on the results of first-principles calculations at the density functional level, a plausible reaction mechanism for the initial events associated with the generation of both hydroxyl radical •OH and superoxide radical anion •O2- in the most reactive (110) surface of AP was proposed. AP/PP composites proved to be an attractive avenue to provide human beings with a broad spectrum of biocide activity.


Assuntos
COVID-19 , Polipropilenos , Humanos , Saúde Pública , SARS-CoV-2 , Staphylococcus aureus
4.
Toxicology ; 409: 112-118, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096437

RESUMO

Male fertility and spermatogenesis are directly linked to the Sertoli cell's ability to produce factors associated with germ cell development. Sertoli cells express receptors for FSH and testosterone, and are the major regulators of spermatogenesis. Recent studies report that regulatory RNA molecules, such as microRNAs (miRNAs), are able to modulate testicular function during spermatogenesis and that their altered expression may be involved in male infertility. miRNAs may play a role in the response to xenobiotics that have an adverse consequences to health. An important group of xenobiotic organic compounds with toxic potential are dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Experimental models of TCDD exposure in mice demonstrated that TCDD exposure causes low sperm count and delayed puberty. This study below examines the mechanism of TCDD's action in human Sertoli cells, through interrogating the expression profile of miRNAs and mRNAs, that enabled us to identify dysregulated molecular pathawys in Sertoli cell. 78 miRNAs presented altered expression, with positive regulation of 73 and negative regulation of 5 miRNAs when compared to the control group. Regarding gene expression profile, 51 genes were deregulated, of which 46 had positive regulation and 5 genes with negative regulation. Important pathways have been altered by the action of TCDD as AhR pathway, GPR68, FGF2 and LIF. This study has opened the door to new perspectives on the TCDD toxicity pathway as it affects Sertoli cells physiology that can ultimately lead to male infertility.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Células de Sertoli/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , RNA Mensageiro/metabolismo , Células de Sertoli/metabolismo
5.
Lasers Med Sci ; 33(8): 1673-1683, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29717386

RESUMO

Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.


Assuntos
Terapia com Luz de Baixa Intensidade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos da radiação , Mioblastos/metabolismo , Mioblastos/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Animais , Linhagem Celular , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Food Chem Toxicol ; 112: 11-18, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29269057

RESUMO

The risk of developing colorectal cancer (CRC) could be associated with red and processed meat intake. Experimental data supports that hemin iron, found abundantly in red meat, promotes CRC in mice and rats, while indole-3 carbinol (I3C) and synbiotics (syn) exert anti-carcinogenic activities in most studies of colon carcinogenesis. This study aimed to investigate the modifying effects of I3C and syn (inulin + Bifidobacterium lactis), given separately or together, on dimethylhidrazine (DMH)-induced colon carcinogenesis in hemin-fed rats. All animals were given four subcutaneous DMH injections and then, two weeks after carcinogen exposure, they began a basal diet containing hemin, hemin + I3C, hemin + syn, or hemin + I3C + syn for 23 weeks. The combination of I3C + syn significantly increased fecal water genotoxicity, tumor volume and invasiveness when compared to the hemin-fed control group. The groups fed I3C or syn alone had a significant reduction in the number of preneoplastic aberrant crypt foci (ACF) lesions compared to the hemin-fed group. Dietary I3C also reduced fecal water genotoxicity. Gene expression analysis of colorectal tumors demonstrated that the combination of dietary I3C + syn increased transcript levels for Raf1 and decreased tumor progression and invasiveness related to the genes Cdh1 and Appl1. This analysis also revealed that the Tnf and Cdh1 genes were significantly up- and down-regulated, respectively, in tumors of rats that received I3C, in comparison with the hemin-fed group. These findings reveal that the joint administration of I3C and syn enhanced the development of colon tumors induced by DMH in hemin-fed rats, while they potentially reduced ACF development when given alone.


Assuntos
Anticarcinógenos/administração & dosagem , Cocarcinogênese , Neoplasias do Colo/etiologia , Hemina/efeitos adversos , Indóis/administração & dosagem , Carne Vermelha/efeitos adversos , Simbióticos/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CACO-2 , Caderinas/genética , Carcinógenos/toxicidade , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Ensaio Cometa , Dimetilidrazinas/toxicidade , Progressão da Doença , Perfilação da Expressão Gênica , Hemina/administração & dosagem , Humanos , Peroxidação de Lipídeos , Masculino , Invasividade Neoplásica/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-raf/genética , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética
7.
Sci Rep ; 7(1): 6998, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765595

RESUMO

Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis between miRNA and mRNA expression profiles of muscle wasting during CC. Global gene expression profiling identified 1,281 genes and 19 miRNAs differentially expressed in muscle wasting during CC. Several of these deregulated genes are known or putative targets of the altered miRNAs, including miR-29a-3p, miR-29b-3p, miR-210-5p, miR-214, and miR-489. Gene ontology analysis on integrative mRNA/miRNA expression profiling data revealed miRNA interactions affecting genes that regulate extra-cellular matrix (ECM) organization, proteasome protein degradation, citric acid cycle and respiratory electron transport. We further identified 11 miRNAs, including miR-29a-3p and miR-29b-3p, which target 21 transcripts encoding the collagen proteins related to ECM organization. Integrative miRNA and mRNA global expression data allowed us to identify miRNA target genes involved in skeletal muscle wasting in CC. Our functional experiments in C2C12 cells confirmed that miR-29b down-regulates collagen genes and contributes to muscle cell atrophy. Collectively, our results suggest that key ECM-associated miRNAs and their target genes may contribute to CC in HF.


Assuntos
Caquexia/fisiopatologia , Perfilação da Expressão Gênica , Insuficiência Cardíaca/complicações , MicroRNAs/análise , Miocárdio/patologia , RNA Mensageiro/análise , Animais , Biometria , Modelos Animais de Doenças , Histocitoquímica , Ratos Wistar
8.
J Gerontol A Biol Sci Med Sci ; 71(5): 601-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25991827

RESUMO

Physical training has been shown to be important to the control of muscle mass during aging, through the activation of several pathways including, IGF1-AKT and PGC-1α. Also, it was demonstrated that LRP130, a component of the PGC-1α complex, is important for the PGC-1α-dependent transcription of several mitochondrial genes in vivo. To explore the role of physical training during aging, we investigated the effects on muscle recovery after short-term immobilization followed by 3 or 7 days with aerobic or resistance training. Using morphological (myofibrillar adenosine triphosphatase activity, to assess the total muscle fiber cross-sectional area (CSA) and the frequency of specific fiber types), biochemical (myosin heavy chain), and molecular analyses (quantitative real-time PCR, functional pathways analyses, and Western blot), our results indicated that after an atrophic stimulus, only animals subjected to aerobic training showed entire recovery of cross-sectional area; aerobic training reduced the ubiquitin-proteasome system components involved in muscle atrophy after 3 days of recovery, and the upregulation in PGC-1α expression enhanced the process of muscle recovery by inhibiting the FoxO pathway, with the possible involvement of LRP130. These results suggest that aerobic training enhanced the muscle regeneration process after disuse-induced atrophy in aged rats possibly through of the LRP130/PGC-1α complex by inhibiting the ubiquitin-proteasome system.


Assuntos
Atrofia Muscular/terapia , Recuperação de Função Fisiológica/fisiologia , Treinamento Resistido , Fatores de Transcrição/fisiologia , Fatores Etários , Animais , Fatores de Transcrição Forkhead/fisiologia , Imobilização , Masculino , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Proteínas do Tecido Nervoso/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/fisiologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA