Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 85(8): 2784-2794, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35421272

RESUMO

Passiflora organensis is a small herbaceous vine with characteristic morphological variations throughout its development. The plant bears button-shaped extrafloral nectaries exclusively in adult leaves. Extrafloral nectaries are structures that secrete nectar and play an important role in plant-animal interactions as a strategy for protecting plants against herbivory. In this work, we performed anatomical and ultrastructural studies to characterize P. organensis extrafloral nectaries during their secretory phase. We showed extrafloral nectaries in Passiflora organensis are composed of three distinct regions: nectary epidermis, nectariferous parenchyma, and subnectariferous parenchyma. Our data suggests that all nectary regions constitute a functional unit involved in nectar production and release. The high metabolic activity in the nectary cells is characterized by the juxtaposition of organelles such as mitochondria and plastids together plasmalemma. In addition, calcium oxalate crystals are frequently associated to the nectaries. An increasing concentration of calcium during leaf development and nectary differentiation was observed, corresponding to the calcium deposition as calcium oxalate crystals. This is the first description of extrafloral nectaries in Passiflora organensis that is a promising tropical model species for several studies. RESEARCH HIGHLIGHTS: The anatomical and ultrastructural characteristics and the presence of calcium oxalate crystals in the nectary tissue suggest novel strategies against herbivory in the genus Passiflora.


Assuntos
Passiflora , Néctar de Plantas , Animais , Cálcio , Oxalato de Cálcio , Passiflora/metabolismo , Néctar de Plantas/metabolismo , Plantas
2.
Plant Reprod ; 35(2): 105-126, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34748087

RESUMO

KEY MESSAGE: Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Passiflora , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Passiflora/genética , Passiflora/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...