Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Comput ; 25(2): 205-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26469220

RESUMO

Geometric crossover is a formal class of crossovers that includes many well-known recombination operators across representations. In previous work, it was shown that all evolutionary algorithms with geometric crossover (but no mutation) do the same form of convex search regardless of the underlying representation, the specific selection mechanism, offspring distribution, search space, and problem at hand. Furthermore, it was suggested that the generalised convex search could perform well on generalised forms of concave and approximately concave fitness landscapes regardless of the underlying space and representation. In this article, we deepen this line of enquiry and study the runtime of generalised convex search on concave fitness landscapes. This is a first step toward linking a geometric theory of representations and runtime analysis in the attempt to (1) set the basis for a more general, unified approach for the runtime analysis of evolutionary algorithms across representations, and (2) identify the essential matching features of evolutionary search behaviour and landscape topography that cause polynomial performance. We present a general runtime result that can be systematically instantiated to specific search spaces and representations and present its specifications to three search spaces. As a corollary, we obtain that the convex search algorithm optimises LeadingOnes in [Formula: see text] fitness evaluations, which is faster than all unbiased unary black box algorithms.


Assuntos
Algoritmos , Evolução Biológica , Humanos , Modelos Biológicos , Mutação , Seleção Genética
2.
Evol Comput ; 15(4): 445-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18021015

RESUMO

Geometric crossover is a representation-independent generalization of the traditional crossover defined using the distance of the solution space. By choosing a distance firmly rooted in the syntax of the solution representation as a basis for geometric crossover, one can design new crossovers for any representation. Using a distance tailored to the problem at hand, the formal definition of geometric crossover allows us to design new problem-specific crossovers that embed problem-knowledge in the search. The standard encoding for multiway graph partitioning is highly redundant: each solution has a number of representations, one for each way of labeling the represented partition. Traditional crossover does not perform well on redundant encodings. We propose a new geometric crossover for graph partitioning based on a labeling-independent distance that filters out the redundancy of the encoding. A correlation analysis of the fitness landscape based on this distance shows that it is well suited to graph partitioning. A second difficulty with designing a crossover for multiway graph partitioning is that of feasibility: in general recombining feasible partitions does not lead to feasible offspring partitions. We design a new geometric crossover for permutations with repetitions that naturally suits partition problems and we test it on the graph partitioning problem. We then combine it with the labeling-independent crossover and obtain a much superior geometric crossover inheriting both advantages.


Assuntos
Algoritmos , Modelos Teóricos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...