Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850584

RESUMO

Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study. We tracked the fate of 809 individual coral recruits that settled after a severe bleaching event at Lizard Island, Great Barrier Reef. Recruited Acropora corals, first detected in 2020, grew to coral cover levels that were equivalent to global average coral cover within just 2 years. Furthermore, we found that just 11.5 Acropora recruits per square meter were sufficient to reach this cover within 2 years. However, wave exposure, growth form and colony density had a marked effect on recovery rates. Our results underscore the importance of considering natural recovery in management and restoration and highlight how lessons learnt from reef recovery can inform our understanding of recovery dynamics in high-diversity climate-disturbed ecosystems.


Assuntos
Antozoários , Animais , Humanos , Ecossistema , Recifes de Corais , Clima
2.
Mar Environ Res ; 193: 106276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016301

RESUMO

Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent. Our results revealed that exposed locations were the least impacted by bleaching, while lagoonal areas exhibited the highest prevalence of bleaching and colony-level bleaching extents. Such patterns of bleaching could be due to prolonged exposure to warm water in the lagoon. These findings highlight the importance of considering location-specific factors when assessing coral health and emphasize the vulnerability of corals in lagoonal habitats to rapid and/or prolonged elevated temperatures.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema
3.
PLoS Biol ; 21(12): e3002430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38085704

RESUMO

The complex ways in which ongoing warming will restructure ecosystems remains poorly understood. A new simulation study in PLOS Biology suggests that expected changes in food resources for marine consumers will outpace the direct, pervasive effects of predicted +2.5°C warming.


Assuntos
Mudança Climática , Ecossistema
4.
Sci Total Environ ; 895: 165188, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385494

RESUMO

Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the 'post-settlement' fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes.


Assuntos
Antozoários , Recifes de Corais , Animais , Sedimentos Geológicos , Ecossistema
5.
Nature ; 618(7964): 322-327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198484

RESUMO

Individual growth is a fundamental life history trait1-4, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage-coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth. We also explored the evolution of the allometric relationship between body size and growth. Our results show that the evolution of fast growth trajectories in reef fishes has been considerably more common than the evolution of slow growth trajectories. Many reef fish lineages shifted towards faster growth and smaller body size evolutionary optima in the Eocene (56-33.9 million years ago), pointing to a major expansion of life history strategies in this Epoch. Of all lineages examined, the small-bodied, high-turnover cryptobenthic fishes shifted most towards extremely high growth optima, even after accounting for body size allometry. These results suggest that the high global temperatures of the Eocene5 and subsequent habitat reconfigurations6 might have been critical for the rise and retention of the highly productive, high-turnover fish faunas that characterize modern coral reef ecosystems.


Assuntos
Evolução Biológica , Recifes de Corais , Peixes , Animais , Tamanho Corporal , Peixes/anatomia & histologia , Peixes/classificação , Peixes/crescimento & desenvolvimento , Filogenia , Fatores de Tempo , Adaptação Biológica
6.
Ecology ; 104(3): e3966, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571283

RESUMO

The TimeFISH database provides the first public time-series dataset on reef fish assemblages in the southwestern Atlantic (SWA), comprising 15 years of data (2007-2022) based on standardized Underwater Visual Censuses (UVCs). The rocky reefs covered by our dataset are influenced by pronounced seasonal cycles of ocean temperatures with warm tropical waters from the Brazil Current in the summer (~27°C) and colder waters from the La Plata River Plume discharge and upwelling from the South Atlantic Central Water in the winter (~18°C). These oceanographic conditions characterize this area as the southernmost tropical-subtropical climatic transition zone in the Atlantic Ocean. As a result, reef fish assemblages are comprised of both tropical and subtropical species. All records included in TimeFISH were collected using UVCs, a nondestructive method that allows the estimation of fish species richness, abundance, and body size distributions. UVCs were performed through 40 m2 belt transects by scuba diving in nine locations along the southern Brazilian coast (25-29°S). Four of these locations lie within the boundaries of the no-entry Arvoredo Marine Biological Reserve, where fishing and recreational activities are forbidden, and the remaining locations are unprotected from these activities. During each belt transect, a diver swam at a constant depth above and parallel to the reef, identifying fish species, counting the number of individuals, and estimating the total body length (Lt in cm) of all detected individuals. All fish individuals in the water column (up to 2 m above the substratum) and at the bottom were targeted. In total, 202,965 individuals belonging to 163 reef fish species and 53 families were recorded across 1857 UVCs. All survey campaigns were funded by either public or mixed capital (private-public) sources, including seven grants from the Brazilian federal and Santa Catarina state governments. Part of the data has already been used in multiple MS.c. and Ph.D. theses and scientific articles. TimeFISH represents an important contribution for future studies aiming to examine temporal and spatial variations of reef fish assemblages in transition zones. No copyright restrictions apply to the use of this data set, other than citing this publication.


Assuntos
Clima Tropical , Água , Animais , Estações do Ano , Tamanho Corporal , Brasil , Peixes , Recifes de Corais , Biodiversidade , Ecossistema
7.
PLoS Biol ; 20(11): e3001898, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36445867

RESUMO

Ecosystem processes are challenging to quantify at a community level, particularly within complex ecosystems (e.g., rainforests, coral reefs). Predation is one of the most important types of species interactions, determining several ecosystem processes. However, while it is widely recognised, it is rarely quantified, especially in aquatic systems. To address these issues, we model predation on fish by fish, in a hyperdiverse coral reef community. We show that body sizes previously examined in fish-fish predation studies (based on a metanalysis), only represent about 5% of likely predation events. The average fish predator on coral reefs is just 3.65 cm; the average fish prey just 1.5 cm. These results call for a shift in the way we view fish predation and its ability to shape the species or functional composition of coral reef fish communities. Considered from a functional group approach, we found general agreement in the distribution of simulated and observed predation events, among both predator and prey functional groups. Predation on coral reefs is a process driven by small fish, most of which are neither seen nor quantified.


Assuntos
Recifes de Corais , Comportamento Predatório , Animais , Ecossistema , Peixes , Tamanho Corporal
8.
Mar Environ Res ; 181: 105763, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206642

RESUMO

Sediments are ubiquitous on coral reefs. However, studies of reef sediments have largely focused on isolated reservoirs, or processes, and rarely consider hydrodynamic drivers. We therefore provide a quantitative snapshot of sediment dynamics on a coral reef. Across a depth profile, we simultaneously examined: suspended sediments, sediment deposition and accumulation, and hydrodynamic and biological movement processes. We reveal the marked potential for the water column to deliver sediments. Currents carried 12.6 t of sediment over the 2,314 m2 study area in 6 days. Sediment traps suggested that a surprisingly high percentage of this sediment was potentially deposited (5.2%). Furthermore, wave-driven resuspension and reworking by parrotfishes separated a highly dynamic sediment regime on the shallow reef flat (3 m), from a more stagnant reef slope (4.5 m-12 m). This study provides a comprehensive model of how hydrodynamic forces and on-reef processes may shape sediment dynamics on a coral reef.


Assuntos
Antozoários , Perciformes , Animais , Recifes de Corais , Sedimentos Geológicos
9.
Ecol Evol ; 12(8): e9249, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052298

RESUMO

The ecological functions of nocturnal coral reef fishes are poorly known. Yet, nocturnal resources for coral reef consumers are theoretically as abundant and productive, if not more so, than their diurnal counterparts. In this study, we quantify and contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef ecosystem, evaluating whether they attain similar levels of biomass production. We integrated a detailed dataset of coral reef fish counts, comprising diurnal and nocturnal species, in sites sheltered and exposed to wave action. We combined somatic growth and mortality models to estimate rates of consumer biomass production, a key ecosystem function. We found that diurnal fish assemblages have a higher biomass than nocturnal fishes: 104% more in sheltered sites and 271% more in exposed sites. Differences in productivity were even more pronounced, with diurnal fishes contributing 163% more productivity in sheltered locations, and 558% more in exposed locations. Apogonidae dominated biomass production within the nocturnal fish assemblage, comprising 54% of total nocturnal fish productivity, which is proportionally more than any diurnal fish family. The substantially lower contributions of nocturnal fishes to biomass and biomass production likely indicate constraints on resource accessibility. Taxa that overcome these constraints may thrive, as evidenced by apogonids. This study highlights the importance of nocturnal fishes in underpinning the flow of energy and nutrients from nocturnal resources to reef communities; a process driven mainly by small, cryptic fishes.

10.
J Exp Biol ; 225(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35855672

RESUMO

Cleaning symbiosis is critical for maintaining healthy biological communities in tropical marine ecosystems. However, potential negative impacts of mutualism, such as the transmission of pathogens and parasites during cleaning interactions, have rarely been evaluated. Here, we investigated whether the dedicated bluestreak cleaner wrasse, Labroides dimidiatus, is susceptible to and can transmit generalist ectoparasites between client fish. In laboratory experiments, L. dimidiatus were exposed to infective stages of three generalist ectoparasite species with contrasting life histories. Labroides dimidiatus were susceptible to infection by the gnathiid isopod Gnathia aureamaculosa, but were significantly less susceptible to the ciliate protozoan Cryptocaryon irritans and the monogenean flatworm Neobenedenia girellae, compared with control host species (Coris batuensis or Lates calcarifer). The potential for parasite transmission from a client fish to the cleaner fish was simulated using experimentally transplanted mobile adult (i.e. egg-producing) monogenean flatworms on L. dimidiatus. Parasites remained attached to cleaners for an average of 2 days, during which parasite egg production continued, but was reduced compared with that on control fish. Over this timespan, a wild cleaner may engage in several thousand cleaning interactions, providing numerous opportunities for mobile parasites to exploit cleaners as vectors. Our study provides the first experimental evidence that L. dimidiatus exhibits resistance to infective stages of some parasites yet has the potential to temporarily transport adult parasites. We propose that some parasites that evade being eaten by cleaner fish could exploit cleaning interactions as a mechanism for transmission and spread.


Assuntos
Isópodes , Parasitos , Perciformes , Animais , Ecossistema , Comportamento Alimentar , Peixes , Simbiose
11.
PLoS Biol ; 19(11): e3001435, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34727097

RESUMO

Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biomassa , Ecossistema , Clima Tropical , Animais , Biodiversidade , Recifes de Corais , Peixes , Geografia , Oceano Índico , Oceano Pacífico , Plâncton/fisiologia
12.
PLoS One ; 16(9): e0250725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499664

RESUMO

Cumulative anthropogenic stressors on tropical reefs are modifying the physical and community structure of coral assemblages, altering the rich biological communities that depend on this critical habitat. As a consequence, new reef configurations are often characterized by low coral cover and a shift in coral species towards massive and encrusting corals. Given that coral numbers are dwindling in these new reef systems, it is important to evaluate the potential influence of coral predation on these remaining corals. We examined the effect of a key group of coral predators (parrotfishes) on one of the emerging dominant coral taxa on Anthropocene reefs, massive Porites. Specifically, we evaluate whether the intensity of parrotfish predation on this key reef-building coral has changed in response to severe coral reef degradation. We found evidence that coral predation rates may have decreased, despite only minor changes in parrotfish abundance. However, higher scar densities on small Porites colonies, compared to large colonies, suggests that the observed decrease in scarring rates may be a reflection of colony-size specific rates of feeding scars. Reduced parrotfish corallivory may reflect the loss of small Porites colonies, or changing foraging opportunities for parrotfishes. The reduction in scar density on massive Porites suggests that the remaining stress-tolerant corals may have passed the vulnerable small colony stage. These results highlight the potential for shifts in ecological functions on ecosystems facing high levels of environmental stress.


Assuntos
Antozoários/crescimento & desenvolvimento , Peixes/fisiologia , Animais , Antozoários/parasitologia , Recifes de Corais , Dinâmica Populacional , Comportamento Predatório
13.
Sci Rep ; 11(1): 18787, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552159

RESUMO

Thermal-stress events have changed the structure, biodiversity, and functioning of coral reefs. But how these disturbances affect the dynamics of individual coral colonies remains unclear. By tracking the fate of 1069 individual Acropora and massive Porites coral colonies for up to 5 years, spanning three bleaching events, we reveal striking genus-level differences in their demographic response to bleaching (mortality, growth, and recruitment). Although Acropora colonies were locally extirpated, substantial local recruitment and fast growth revealed a marked capacity for apparent recovery. By contrast, almost all massive Porites colonies survived and the majority grew in area; yet no new colonies were detected over the 5 years. Our results highlight contrasting dynamics of boom-and-bust vs. protracted declines in two major coral groups. These dangerous demographics emphasise the need for caution when documenting the susceptibility and perceived resistance or recovery of corals to disturbances.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Antozoários/metabolismo , Mudança Climática , Recifes de Corais , Fatores de Tempo
14.
J Environ Manage ; 289: 112471, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812145

RESUMO

Ecosystem functions underpin productivity and key services to humans, such as food provision. However, as the severity of environmental stressors intensifies, it is becoming increasingly unclear if, and to what extent, critical functions and services can be sustained. This issue is epitomised on coral reefs, an ecosystem at the forefront of environmental transitions. We provide a functional profile of a coral reef ecosystem, linking time-series data to quantified processes. The data reveal a prolonged collapse of ecosystem functions in this previously resilient system. The results suggest that sediment accumulation in algal turfs has led to a decline in resource yields to herbivorous fishes and a decrease in fish-based ecosystem functions, including a collapse of both fish biomass and productivity. Unfortunately, at present, algal turf sediment accumulation is rarely monitored nor managed in coral reef systems. Our examination of functions through time highlights the value of directly assessing functions, their potential vulnerability, and the capacity of algal turf sediments to overwhelm productive high-diversity coral reef ecosystems.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Peixes , Sedimentos Geológicos , Herbivoria , Humanos
15.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593939

RESUMO

One of the most prominent features of life on Earth is the uneven number of species across large spatial scales. Despite being inherently linked to energetic constraints, these gradients in species richness distribution have rarely been examined from a trophic perspective. Here we dissect the global diversity of over 3,600 coral reef fishes to reveal patterns across major trophic groups. By analyzing multiple nested spatial scales, we show that planktivores contribute disproportionally to the formation of the Indo-Australian Archipelago (IAA) marine biodiversity hotspot. Besides being "hotter" at the hotspot, planktivorous fishes display the steepest decline in species numbers with distance from the IAA when compared to other trophic groups. Surprisingly, we did not detect differences in diversification, transition, and dispersal rates in extant species phylogenies that would explain this remarkable gradient in planktivorous fish richness. Thus, we identify two potential complementary drivers for this pattern. First, exceptional levels of partitioning among planktivorous coral reef fishes were driven by temporally stable oceanographic conditions and abundant planktonic resources in the IAA. Second, extinctions of planktivores outside the IAA have been particularly pronounced during Quaternary climate fluctuations. Overall, our results highlight trophic ecology as an important component of global species richness gradients.


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Peixes/fisiologia , Cadeia Alimentar , Filogenia , Animais , Antozoários/fisiologia , Austrália , Recifes de Corais , Extinção Biológica , Peixes/classificação , Oceanos e Mares , Plâncton/fisiologia
16.
Nat Commun ; 11(1): 3832, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737315

RESUMO

Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world's hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth's hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss.


Assuntos
Antozoários/fisiologia , Biodiversidade , Peixes/fisiologia , Modelos Estatísticos , Adaptação Fisiológica , Animais , Biomassa , Recifes de Corais , Planeta Terra , Ecossistema , Peixes/classificação , Cadeia Alimentar , Temperatura Alta , Oriente Médio , Oceanos e Mares
17.
Nat Commun ; 11(1): 2669, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472063

RESUMO

Reef fishes are an exceptionally speciose vertebrate assemblage, yet the main drivers of their diversification remain unclear. It has been suggested that Miocene reef rearrangements promoted opportunities for lineage diversification, however, the specific mechanisms are not well understood. Here, we assemble near-complete reef fish phylogenies to assess the importance of ecological and geographical factors in explaining lineage origination patterns. We reveal that reef fish diversification is strongly associated with species' trophic identity and body size. Large-bodied herbivorous fishes outpace all other trophic groups in recent diversification rates, a pattern that is consistent through time. Additionally, we show that omnivory acts as an intermediate evolutionary step between higher and lower trophic levels, while planktivory represents a common transition destination. Overall, these results suggest that Miocene changes in reef configurations were likely driven by, and subsequently promoted, trophic innovations. This highlights trophic evolution as a key element in enhancing reef fish diversification.


Assuntos
Biodiversidade , Evolução Biológica , Peixes/classificação , Especiação Genética , Animais , Coevolução Biológica , Tamanho Corporal , Recifes de Corais , Peixes/genética , Geografia , Herbivoria , Filogenia
18.
Glob Chang Biol ; 26(3): 1295-1305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782858

RESUMO

Coral reef fisheries support the livelihoods of millions of people in tropical countries, despite large-scale depletion of fish biomass. While human adaptability can help to explain the resistance of fisheries to biomass depletion, compensatory ecological mechanisms may also be involved. If this is the case, high productivity should coexist with low biomass under relatively high exploitation. Here we integrate large spatial scale empirical data analysis and a theory-driven modelling approach to unveil the effects of human exploitation on reef fish productivity-biomass relationships. We show that differences in how productivity and biomass respond to overexploitation can decouple their relationship. As size-selective exploitation depletes fish biomass, it triggers increased production per unit biomass, averting immediate productivity collapse in both the modelling and the empirical systems. This 'buffering productivity' exposes the danger of assuming resource production-biomass equivalence, but may help to explain why some biomass-depleted fish assemblages still provide ecosystem goods under continued global fishing exploitation.


Assuntos
Antozoários , Recifes de Corais , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes , Humanos
19.
Neotrop. ichthyol ; 18(1): e190127, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1098414

RESUMO

Species interactions can modulate the diversity and enhance the stability of biological communities in aquatic ecosystems. Despite previous efforts to describe fish interactions in tropical rivers, the role of habitat characteristics, community structure, and trophic traits over these interactions is still poorly understood. To investigate among-habitat variation in substratum feeding pressure and agonistic interactions between fishes, we used remote underwater videos in three habitats of a clearwater river in the Central Western, Brazil. We also performed visual surveys to estimate the abundance and biomass of fishes and proposed a trophic classification to understand how these variables can affect fish interactions. Community structure was the main factor affecting the variation in the interactions among the habitats. Biomass was the main variable determining which habitat a fish will feed on, while species abundance determined with how many other species it will interact in the agonistic interaction networks for each habitat. Specific habitats are not only occupied, but also used in distinct ways by the fish community. Overall, our results demonstrate the importance of the heterogeneity of habitats in tropical rivers for the interactions performed by the fishes and how the intensity of these interactions is affected by community structure.(AU)


Interações realizadas por peixes podem modular a diversidade e assegurar a estabilidade de comunidades em rios tropicais. Apesar dessa importância, poucos estudos relacionam as interações ecológicas com as características do habitat, estrutura da comunidade e atributos das espécies de peixes. Por meio de filmagens remotas subaquáticas nós verificamos como a pressão alimentar dos peixes sobre a comunidade bentônica e as interações agonísticas entre peixes são influenciadas por essas características do habitat e da comunidade em um rio tropical de água clara na região Centro-Oeste do Brasil. Também realizamos censos visuais para estimar a abundância e a biomassa dos peixes e propusemos uma classificação funcional para entender como essas variáveis podem afetar as interações dos peixes. A estrutura da comunidade foi o principal fator que afetou a variação nas interações entre os habitats. A biomassa dos peixes determinou em qual hábitat um peixe se alimentará, enquanto a abundância das espécies determinou com quantas outras espécies elas interagem nas redes de interações agonísticas de cada habitat. Habitats específicos não são apenas ocupados, mas também utilizados de maneiras distintas pela comunidade de peixes. Nossos resultados demonstram a importância da heterogeneidade de habitats para as interações realizadas pelos peixes em rios tropicais e como a intensidade dessas interações é afetada pela estrutura da comunidade.(AU)


Assuntos
Animais , Ecossistema , Métodos de Alimentação/veterinária , Peixes/classificação , Characidae
20.
Science ; 366(6472)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857447

RESUMO

Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biomassa , Demografia , Peixes , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...