Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731426

RESUMO

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Assuntos
Antioxidantes , Azeite de Oliva , Extratos Vegetais , Polifenóis , Azeite de Oliva/química , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Química Verde/métodos , Olea/química , Cromatografia Líquida de Alta Pressão/métodos , Solventes/química
2.
Foods ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275685

RESUMO

The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.

3.
Foods ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37685210

RESUMO

Lactic acid bacteria (LAB) have been documented as potential vitamin B12 producers and may constitute an exogenous source of cobalamin for the microalga Chlorella vulgaris, which has been described as being able to perform vitamin uptake. Hence, there is an interest in discovering novel B12-producing probiotic LAB. Therefore, the purpose of the current work was to perform a phenotype-genotype analysis of the vitamin B12 biosynthesis capacity of LAB isolated from C. vulgaris bioreactors, and investigate their probiotic potential. Among the selected strains, Lactococcus lactis E32, Levilactobacillus brevis G31, and Pediococcus pentosaceus L51 demonstrated vitamin B12 biosynthesis capacity, with the latter producing the highest (28.19 ± 2.27 pg mL-1). The genomic analysis confirmed the presence of pivotal genes involved in different steps of the biosynthetic pathway (hemL, cbiT, cobC, and cobD). Notably, P. pentosaceus L51 was the only strain harboring cobA, pduU, and pduV genes, which may provide evidence for the presence of the cobalamin operon. All strains demonstrated the capability to withstand harsh gastrointestinal conditions, although P. pentosaceus L51 was more resilient. The potential for de novo cobalamin biosynthesis and remarkable probiotic features highlighted that P. pentosaceus L51 may be considered the most promising candidate strain for developing high-content vitamin B12 formulations.

4.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613248

RESUMO

The micro- and nanoencapsulation of bioactive compounds has resulted in a large improvement in the food, nutraceutical, pharmaceutical, and agriculture industries. These technologies serve, on one side, to protect, among others, vitamins, minerals, essential fatty acids, polyphenols, flavours, antimicrobials, colorants, and antioxidants, and, on the other hand, to control the release and assure the delivery of the bioactive compounds, targeting them to specific cells, tissues, or organs in the human body by improving their absorption/penetration through the gastrointestinal tract. The food industry has been applying nanotechnology in several ways to improve food texture, flavour, taste, nutrient bioavailability, and shelf life using nanostructures. The use of micro- and nanocapsules in food is an actual trend used mainly in the cereal, bakery, dairy, and beverage industries, as well as packaging and coating. The elaboration of bio capsules with high-value compounds from agro-industrial by-products is sustainable for the natural ecosystem and economically interesting from a circular economy perspective. This critical review presents the principal methodologies for performing micro- and nanoencapsulation, classifies them (top-down and/or bottom-up), and discusses the differences and advantages among them; the principal types of encapsulation systems; the natural plant sources, including agro-industrial by-products, of bioactive compounds with interest for the food industry to be encapsulated; the bioavailability of encapsulates; and the main techniques used to analyse micro- and nanocapsules. Research work on the use of encapsulated bioactive compounds, such as lycopene, hydroxytyrosol, and resveratrol, from agro-industrial by-products must be further reinforced, and it plays an important role, as it presents a high potential for the use of their antioxidant and/or antimicrobial activities in food applications and, therefore, in the food industry. The incorporation of these bioactive compounds in food is a challenge and must be evaluated, not only for their nutritional aspect, but also for the chemical safety of the ingredients. The potential use of these products is an available economical alternative towards a circular economy and, as a consequence, sustainability.

5.
J Food Sci Technol ; 54(10): 3152-3160, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28974800

RESUMO

The aim of the present work was to study the effect of the osmotic dehydration (OD) pre-treatment on the mass transfer kinetics and water activity (aw) of apple cubes during hot air drying. The adequacy of different mathematical models to describe the moisture content of the product during this process was also evaluated. Apple cubes were osmotically dehydrated with sucrose or sorbitol solutions at 60 °C, and then dried by air at 25-80 °C. Overall, the OD and rise of the air temperature resulted in an increased water loss rate and a reduction of the aw. The osmotic agent used in the OD was not relevant to the air drying kinetics, but the pre-treatment with sorbitol solutions produced dried samples with lower aw. Newton's, Page's, modified Page's, Henderson and Pabis', Two-term, Two-term exponential, Logarithmic, Midilli et al.'s models could describe the moisture content well during the air drying process.

6.
World J Microbiol Biotechnol ; 28(3): 1253-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22805845

RESUMO

The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at -21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, -21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110ºC) under nitrogen and -21°C.


Assuntos
Biomassa , Dessecação/métodos , Preservação Biológica/métodos , Volvocida/química , Cromatografia Líquida de Alta Pressão , Temperatura , Fatores de Tempo , Xantofilas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...