Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 107: 103873, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068045

RESUMO

Magnetic resonance imaging (MRI) is the preferred modality to assess hemodynamics in healthy and diseased blood vessels. As an affordable and non-invasive alternative, Color-Doppler imaging is a good candidate. Nevertheless, Color-Doppler acquisitions provide only partial information on the blood velocity within the vessel. We present a framework to reconstruct 2D velocity fields in the aorta. We generated 2D Color-Doppler-like images from patient-specific Computational Fluid Dynamics (CFD) models of abdominal aortas and evaluated the framework's performance. The 2D velocity field reconstruction is based on the minimization of a cost function, in which the reconstructed velocities are constrained to satisfy fluid dynamics principles. The numerical evaluations show that the reconstructed vector flow fields agree with ground-truth velocities, with an average magnitude error of less than 4% and an average angular error of less than 2∘. We lastly illustrate the 2D velocity field reconstructed from in-vivo Color-Doppler data. Observing the hemodynamics in patients is expected to have a clinical impact in assessing disease development and progression, such as abdominal aortic aneurysms.


Assuntos
Aorta Abdominal , Hemodinâmica , Aorta Abdominal/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Humanos , Hidrodinâmica , Ultrassonografia Doppler
2.
Biomech Model Mechanobiol ; 18(6): 1549-1561, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31161351

RESUMO

Cardiac modeling has recently emerged as a promising tool to study pathophysiology mechanisms and to predict treatment outcomes for personalized clinical decision support. Nevertheless, achieving convergence under large deformation and defining a robust meshing for realistic heart geometries remain challenging, especially when maintaining the computational cost reasonable. Smoothed particle hydrodynamics (SPH) appears to be a promising alternative to the finite element method (FEM) since it removes the burden of mesh generation. A point cloud is used where each point (particle) contains all the physical properties that are updated throughout the simulation. SPH was evaluated for solid mechanics applications in the last decade but its capacity to address the challenge of simulating the mechanics of the heart has never been evaluated. In this paper, a total Lagrangian formulation of a corrected SPH was used to solve three solid mechanics problems designed to test important features that a cardiac mechanics solver should have. SPH results, in terms of ventricle displacements and strains, were compared to results obtained with 11 different FEM-based solvers, by using synthetic cardiac data from a benchmark study. In particular, passive dilation and active contraction were simulated in an ellipsoidal left ventricle with the exponential anisotropic constitutive law of Guccione following the direction of fibers. The proposed meshless method is able to reproduce the results of three benchmark problems for cardiac mechanics. Hyperelastic material with fiber orientation and high Poisson ratio allows wall thickening/thinning when large deformation is present.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Ventrículos do Coração/anatomia & histologia , Hidrodinâmica , Contração Miocárdica , Pressão , Estresse Mecânico
3.
Cardiovasc Eng Technol ; 9(4): 544-564, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203115

RESUMO

PURPOSE: Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. METHODS: 3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. RESULTS: A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. CONCLUSIONS: Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.


Assuntos
Angiografia Cerebral/métodos , Circulação Cerebrovascular , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento Tridimensional , Aneurisma Intracraniano/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Estresse Mecânico
4.
Cardiovasc Eng Technol ; 9(4): 565-581, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191538

RESUMO

PURPOSE: Advanced morphology analysis and image-based hemodynamic simulations are increasingly used to assess the rupture risk of intracranial aneurysms (IAs). However, the accuracy of those results strongly depends on the quality of the vessel wall segmentation. METHODS: To evaluate state-of-the-art segmentation approaches, the Multiple Aneurysms AnaTomy CHallenge (MATCH) was announced. Participants carried out segmentation in three anonymized 3D DSA datasets (left and right anterior, posterior circulation) of a patient harboring five IAs. Qualitative and quantitative inter-group comparisons were carried out with respect to aneurysm volumes and ostia. Further, over- and undersegmentation were evaluated based on highly resolved 2D images. Finally, clinically relevant morphological parameters were calculated. RESULTS: Based on the contributions of 26 participating groups, the findings reveal that no consensus regarding segmentation software or underlying algorithms exists. Qualitative similarity of the aneurysm representations was obtained. However, inter-group differences occurred regarding the luminal surface quality, number of vessel branches considered, aneurysm volumes (up to 20%) and ostium surface areas (up to 30%). Further, a systematic oversegmentation of the 3D surfaces was observed with a difference of approximately 10% to the highly resolved 2D reference image. Particularly, the neck of the ruptured aneurysm was overrepresented by all groups except for one. Finally, morphology parameters (e.g., undulation and non-sphericity) varied up to 25%. CONCLUSIONS: MATCH provides an overview of segmentation methodologies for IAs and highlights the variability of surface reconstruction. Further, the study emphasizes the need for careful processing of initial segmentation results for a realistic assessment of clinically relevant morphological parameters.


Assuntos
Angiografia Cerebral/métodos , Circulação Cerebrovascular , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/etiologia , Aneurisma Roto/fisiopatologia , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Imageamento Tridimensional , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/fisiopatologia , Pessoa de Meia-Idade , Artéria Cerebral Média/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Estresse Mecânico , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/fisiopatologia
5.
Comput Med Imaging Graph ; 50: 2-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25704859

RESUMO

MOTIVATION: Treatment of intracranial aneurysms with flow diverters (FDs) has recently become an attractive alternative. Although considerable effort has been devoted to understand their effects on the time-averaged or peak systolic flow field, no previous study has analyzed the variability of FD-induced flow reduction along the cardiac cycle. METHODS: Fourteen saccular aneurysms, candidates for FD treatment because of their morphology, located on the internal carotid artery were virtually treated with FDs and pre- and post-treatment blood flow was simulated with CFD techniques. Common hemodynamic variables were recorded at each time step of the cardiac cycle and differences between the untreated and treated models were assessed. RESULTS: Flow pulsatility, expressed by the pulsatility index (PI) of the velocity, significantly increased (36.0%; range: 14.6-88.3%) after FD treatment. Peak systole velocity reduction was significantly smaller (30.5%; range: 19.6-51.0%) than time-averaged velocity reduction (43.0%; range: 29.1-69.8%). No changes were observed in the aneurysmal pressure. CONCLUSIONS: FD-induced flow reduction varies considerably during the cardiac cycle. FD treatment significantly increased the flow pulsatility in the aneurysm.


Assuntos
Simulação por Computador , Hemodinâmica , Aneurisma Intracraniano , Velocidade do Fluxo Sanguíneo , Artéria Carótida Interna , Humanos , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/terapia
6.
J Biomech Eng ; 137(12): 121008, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26473395

RESUMO

With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent "outliers" (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computational results, it is suggested that time-dependent measurements should be conducted in the future. However, it is recognized that this study does not include the biological aspects of the aneurysm, which needs to be considered to be able to more precisely identify the specific rupture risk of an intracranial aneurysm.


Assuntos
Aneurisma Roto/fisiopatologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Circulação Cerebrovascular , Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Simulação por Computador , Humanos , Resistência ao Cisalhamento
7.
J Biomech ; 48(4): 585-591, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25638035

RESUMO

Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used.


Assuntos
Artéria Carótida Interna/fisiopatologia , Simulação por Computador , Hemodinâmica/fisiologia , Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Fenômenos Biomecânicos/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Hidrodinâmica , Modelos Teóricos , Estresse Mecânico
8.
J Neurointerv Surg ; 7(4): 272-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24692666

RESUMO

BACKGROUND: Flow diverter (FD) treatment aims to slow down blood flow inside the aneurysm and increase the average time that blood resides in the aneurysm. OBJECTIVE: To investigate the relationship between vessel and aneurysm morphology and their influence on the way in which braided FDs change intra-aneurysmal hemodynamics. MATERIALS AND METHODS: Twenty-three patient-specific intracranial aneurysm models at the supraclinoid segment of the internal carotid artery were studied. Vessel and aneurysm morphology was quantified and blood flow was modeled with computational fluid dynamics simulations. The relation between morphologic variables and the hemodynamic variables, WSS (wall shear stress) and totime (ratio between the aneurysm volume and inflow at the aneurysm neck), was assessed statistically. RESULTS: Intra-aneurysmal flow was less dependent on the vessel than on aneurysm morphology. In summary, after treatment with a FD, a greater aneurysm flow reduction and redirection to the vessel main stream should be expected for (a) aneurysms located further away from the curvature peak, (b) aneurysms on the inner side of the bend, (c) aneurysms with no proximal stenosis, and (d) larger aneurysms. CONCLUSIONS: Although the change in intra-aneurysmal hemodynamics after FD treatment strongly depends on the morphology of the aneurysm, the hemodynamic effect of a FD is also linked to the parent vessel morphology and the position and orientation of the aneurysm with respect to it.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Embolização Terapêutica/métodos , Hemodinâmica/fisiologia , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/cirurgia , Modelos Cardiovasculares , Embolização Terapêutica/tendências , Humanos , Aneurisma Intracraniano/fisiopatologia , Resultado do Tratamento
9.
J Biomech ; 47(10): 2362-70, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24861633

RESUMO

BACKGROUND: CFD has been used to assess intra-aneurysmal hemodynamics. Nevertheless, the lack of patient-specific flow information has triggered the possibility of implementing a wide variety of physiological flow conditions. Due to these uncertainties in the patient flow conditions, the normalization of the intra-aneurysmal hemodynamics is generally conducted. PURPOSE: To investigate how intra-aneurysmal and arterial hemodynamics change over time when different physiological flow conditions are imposed. MATERIAL AND METHOD: Eleven image-based aneurysm models were used in this study. CFD simulations were performed under pulsatile flows. Velocity magnitude and wall shear stress (WSS) were calculated during one cardiac cycle. RESULTS: Maximum hemodynamic condition does not necessarily occurred at peak systole. The shifted time from peak systole to the time where the maximum hemodynamic condition occurs inside the aneurysm depends on the aneurysm size, flow rate, surrounding vasculature and the stabilities of flow patterns. Larger shifted times were observed with increasing aneurysm size as well as with reducing the flow rate. Moreover, the maximum hemodynamic condition can occur earlier than peak systole if flow patterns at parent artery change. Differences between peak systolic WSS and maximum WSS can be up to 65%. Moreover, the velocity magnitude and WSS depend on the selected segment of the parent artery, with relatively larger variability near peak systole than the rest of the cardiac cycle. More than 50% of differences were found between two arterial segments arbitrary selected for a given flow rate. CONCLUSIONS: Our results indicate that if the highest intra-aneurysmal stress is calculated, then it is preferable to use the time instance where the maximum WSS occurred instead of the peak systolic WSS. Additionally, the normalization of intra-aneurysmal hemodynamics should be done with variables that do not depend on any arbitrary segment of the parent artery.


Assuntos
Artéria Carótida Interna/fisiologia , Hemodinâmica/fisiologia , Aneurisma Intracraniano/fisiopatologia , Fluxo Pulsátil , Sístole , Artérias , Artéria Carótida Interna/fisiopatologia , Simulação por Computador , Humanos , Imageamento Tridimensional , Modelos Cardiovasculares , Resistência ao Cisalhamento , Estresse Mecânico , Fatores de Tempo , Raios X
10.
J Biomech ; 46(13): 2158-64, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23891312

RESUMO

Endovascular coiling aims to isolate the aneurysm from blood circulation by altering hemodynamics inside the aneurysm and triggering blood coagulation. Computational fluid dynamics (CFD) techniques have the potential to predict the post-operative hemodynamics and to investigate the complex interaction between blood flow and coils. The purpose of this work is to study the influence of blood viscosity on hemodynamics in coiled aneurysms. Three image-based aneurysm models were used. Each case was virtually coiled with a packing density of around 30%. CFD simulations were performed in coiled and untreated aneurysm geometries using a Newtonian and a Non-Newtonian fluid models. Newtonian fluid slightly overestimates the intra-aneurysmal velocity inside the aneurysm before and after coiling. There were numerical differences between fluid models on velocity magnitudes in coiled simulations. Moreover, the non-Newtonian fluid model produces high viscosity (>0.007 [Pas]) at aneurysm fundus after coiling. Nonetheless, these local differences and high-viscous regions were not sufficient to alter the main flow patterns and velocity magnitudes before and after coiling. To evaluate the influence of coiling on intra-aneurysmal hemodynamics, the assumption of a Newtonian fluid can be used.


Assuntos
Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Viscosidade Sanguínea , Circulação Cerebrovascular , Hemodinâmica , Humanos , Aneurisma Intracraniano/sangue
11.
IEEE Trans Med Imaging ; 32(1): 119-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23008248

RESUMO

Computational algorithms modeling the insertion of endovascular devices, such as coil or stents, have gained an increasing interest in recent years. This scientific enthusiasm is due to the potential impact that these techniques have to support clinicians by understanding the intravascular hemodynamics and predicting treatment outcomes. In this work, a virtual coiling technique for treating image-based aneurysm models is proposed. A dynamic path planning was used to mimic the structure and distribution of coils inside aneurysm cavities, and to reach high packing densities, which is desirable by clinicians when treating with coils. Several tests were done to evaluate the performance on idealized and image-based aneurysm models. The proposed technique was validated using clinical information of real coiled aneurysms. The virtual coiling technique reproduces the macroscopic behavior of inserted coils and properly captures the densities, shapes and coil distributions inside aneurysm cavities. A practical application was performed by assessing the local hemodynamic after coiling using computational fluid dynamics (CFD). Wall shear stress and intra-aneurysmal velocities were reduced after coiling. Additionally, CFD simulations show that coils decrease the amount of contrast entering the aneurysm and increase its residence time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/patologia , Modelos Cardiovasculares , Algoritmos , Análise de Variância , Angiografia Cerebral , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Aneurisma Intracraniano/fisiopatologia , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
12.
J Neurointerv Surg ; 5 Suppl 3: iii33-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22914746

RESUMO

OBJECTIVE: Endovascular coiling is often performed by first placing coils along the aneurysm wall to create a frame and then by filling up the aneurysm core. However, little attention has been paid to quantifying this filling strategy and to see how it changes for different packing densities. The purpose of this work is to analyze and quantify endovascular coil distribution inside aneurysms based on serial histological images of experimental aneurysms. METHOD: Seventeen histological images from 10 elastase-induced saccular aneurysms in rabbits treated with coils were studied. In-slice coil density, defined as the area taken up by coil winds, was calculated on each histological image. Images were analyzed by partitioning the aneurysm along its longitudinal and radial axes. Coil distribution was quantified by measuring and comparing the in-slice coil density of each partition. RESULTS: Mean total in-slice coil density was 22.0 ± 6.2% (range 10.1-30.2%). The density was non-significantly different (p = 0.465) along the longitudinal axis. A significant difference (p < 0.001) between peripheral and core densities was found. Additionally, the peripheral-core density ratio was observed to be inversely proportional to the total in-slice coil density (R(2)=0.57, p <0.001). This ratio was near unity for high in-slice coil density (around 30%). CONCLUSIONS: These findings demonstrate and confirm that coils tend to be located near the aneurysm periphery when few are inserted. However, when more coils are added, the radial distribution becomes more homogeneous. Coils are homogeneously distributed along the longitudinal axis.


Assuntos
Aneurisma/patologia , Aneurisma/cirurgia , Procedimentos Endovasculares/métodos , Análise de Variância , Animais , Embolização Terapêutica/instrumentação , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Variações Dependentes do Observador , Coelhos , Fixação de Tecidos
13.
Comput Methods Programs Biomed ; 108(2): 806-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22749086

RESUMO

Determining whether and how an intracranial aneurysm should be treated is a tough decision that clinicians face everyday. Emerging computational tools could help clinicians analyze clinical data and make these decisions. AngioLab is a single graphical user interface, developed on top of the open source framework GIMIAS, that integrates some of the latest image analysis and computational modeling tools for intracranial aneurysms. Two workflows are available: Advanced Morphological Analysis (AMA) and Endovascular Treatment Planning (ETP). AngioLab has been evaluated by a total of 62 clinicians, who considered the information provided by AngioLab relevant and meaningful. They acknowledged the emerging need of these type of tools and the potential impact they might have on the clinical decision-making process.


Assuntos
Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/terapia , Software , Gráficos por Computador , Humanos , Modelos Anatômicos , Interface Usuário-Computador
14.
Med Image Comput Comput Assist Interv ; 14(Pt 1): 355-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003637

RESUMO

Coiling is possibly the most widespread endovascular treatment for intracranial aneurysms. It consists in the placement of metal wires inside the aneurysm to promote blood coagulation. This work presents a virtual coiling technique for pre-interventional planning and post-operative assessment of coil embolization procedure of aneurysms. The technique uses a dynamic path planning algorithm to mimic coil insertion inside a 3D aneurysm model, which allows to obtain a plausible distribution of coils within a patient-specific anatomy. The technique was tested on two idealized geometries: an sphere and a hexahedron. Subsequently, the proposed technique was applied in 10 realistic aneurysm geometries to show its reliability in anatomical models. The results of the technique was compared to digital substraction angiography images of two aneurysms.


Assuntos
Embolização Terapêutica/instrumentação , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/cirurgia , Cirurgia Assistida por Computador/métodos , Algoritmos , Aneurisma , Angiografia/métodos , Simulação por Computador , Embolização Terapêutica/métodos , Desenho de Equipamento , Humanos , Metais/química , Modelos Anatômicos , Modelos Teóricos
15.
Interface Focus ; 1(3): 338-48, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22670204

RESUMO

Cerebral aneurysms are abnormal focal dilatations of artery walls. The interest in virtual tools to help clinicians to value the effectiveness of different procedures for cerebral aneurysm treatment is constantly growing. This study is focused on the analysis of the influence of different stent deployment approaches on intra-aneurysmal haemodynamics using computational fluid dynamics (CFD). A self-expanding stent was deployed in an idealized aneurysmatic cerebral vessel in two initial positions. Different cases characterized by a progression of simplifications on stent modelling (geometry and material) and vessel material properties were set up, using finite element and fast virtual stenting methods. Then, CFD analysis was performed for untreated and stented vessels. Haemodynamic parameters were analysed qualitatively and quantitatively, comparing the cases and the two initial positions. All the cases predicted a reduction of average wall shear stress and average velocity of almost 50 per cent after stent deployment for both initial positions. Results highlighted that, although some differences in calculated parameters existed across the cases based on the modelling simplifications, all the approaches described the most important effects on intra-aneurysmal haemodynamics. Hence, simpler and faster modelling approaches could be included in clinical workflow and, despite the adopted simplifications, support clinicians in the treatment planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...