Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Adv ; 9(17): eade8184, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115930

RESUMO

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.


Assuntos
Rabdomiossarcoma , Sarcoma , Humanos , Animais , Camundongos , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Sarcoma/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
2.
Dev Cell ; 57(8): 959-973.e7, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472321

RESUMO

Noncompaction cardiomyopathy is a common congenital cardiac disorder associated with abnormal ventricular cardiomyocyte trabeculation and impaired pump function. The genetic basis and underlying mechanisms of this disorder remain elusive. We show that the genetic deletion of RNA-binding protein with multiple splicing (Rbpms), an uncharacterized RNA-binding factor, causes perinatal lethality in mice due to congenital cardiovascular defects. The loss of Rbpms causes premature onset of cardiomyocyte binucleation and cell cycle arrest during development. Human iPSC-derived cardiomyocytes with RBPMS gene deletion have a similar blockade to cytokinesis. Sequencing analysis revealed that RBPMS plays a role in RNA splicing and influences RNAs involved in cytoskeletal signaling pathways. We found that RBPMS mediates the isoform switching of the heart-enriched LIM domain protein Pdlim5. The loss of Rbpms leads to an abnormal accumulation of Pdlim5-short isoforms, disrupting cardiomyocyte cytokinesis. Our findings connect premature cardiomyocyte binucleation to noncompaction cardiomyopathy and highlight the role of RBPMS in this process.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Citocinese , Ventrículos do Coração/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Nat Commun ; 12(1): 5270, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489413

RESUMO

Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.


Assuntos
Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Doxorrubicina/farmacologia , Feminino , Heme Oxigenase (Desciclizante)/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Fator 1 Relacionado a NF-E2/genética , Oxirredução , Proteostase , Ratos Sprague-Dawley , Regeneração
4.
Nat Cell Biol ; 23(5): 467-475, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33941892

RESUMO

Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1-5. Yet, staunch epigenetic barriers severely limit the ability of these cocktails to reprogramme adult fibroblasts6,7. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the histone reader PHF7 as the most potent activating factor8. Mechanistically, PHF7 localizes to cardiac super enhancers in fibroblasts, and through cooperation with the SWI/SNF complex, it increases chromatin accessibility and transcription factor binding at these sites. Furthermore, PHF7 recruits cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieves efficient reprogramming in the absence of Gata4. Here, we highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodelling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.


Assuntos
Fator de Transcrição GATA4/metabolismo , Histonas/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Reprogramação Celular , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
J Cell Commun Signal ; 12(1): 413-421, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28887614

RESUMO

Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.

6.
Genes Dev ; 31(17): 1770-1783, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982760

RESUMO

Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts. Among a collection of inducers and repressors of cardiac reprogramming, we discovered that the zinc finger transcription factor 281 (ZNF281) potently stimulates cardiac reprogramming by genome-wide association with GATA4 on cardiac enhancers. Concomitantly, ZNF281 suppresses expression of genes associated with inflammatory signaling, suggesting the antagonistic convergence of cardiac and inflammatory transcriptional programs. Consistent with an inhibitory influence of inflammatory pathways on cardiac reprogramming, blockade of these pathways with anti-inflammatory drugs or components of the nucleosome remodeling deacetylase (NuRD) complex, which associate with ZNF281, stimulates cardiac gene expression. We conclude that ZNF281 acts at a nexus of cardiac and inflammatory gene programs, which exert opposing influences on fibroblast to cardiac reprogramming.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/metabolismo , Anti-Inflamatórios/farmacologia , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/fisiologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas Repressoras , Transcriptoma
7.
Stem Cell Reports ; 8(3): 548-560, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28262548

RESUMO

Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.


Assuntos
Reprogramação Celular/genética , Diaminas/farmacologia , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Ativação Transcricional , Animais , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular , Reprogramação Celular/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Transcriptoma
8.
Dis Model Mech ; 9(4): 441-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851244

RESUMO

Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophyin vivousing unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.


Assuntos
Angiotensina I/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Transtornos Musculares Atróficos/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/farmacologia , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Contração Isométrica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/patologia , Transtornos Musculares Atróficos/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Fragmentos de Peptídeos/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Phytomedicine ; 22(10): 885-93, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26321737

RESUMO

BACKGROUND: Pure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-ß1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-ß involves the Smad pathway. PURPOSE: To evaluate the effect of TGF-ß and the effect of apocynin on TGF-ß1 expression in skeletal muscle cells. STUDY DESIGN: Controlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-ß1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-ß-receptor I inhibitor), or chelerythrine (PKC inhibitor). METHODS: TGF-ß1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements. RESULTS: We show that myoblasts respond to TGF-ß1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-ß1 also induced ROS. Remarkably, apocynin inhibited the TGF-ß1 induced ROS as well as the autoinduction of TGF-ß1 gene expression. We also show that TGF-ß-induced ROS production and TGF-ß1 expression require PKC activity as indicated by the inhibition using chelerythrine. CONCLUSION: These results strongly suggest that TGF-ß induces its own expression through a TGF-ß-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.


Assuntos
Acetofenonas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Benzofenantridinas/farmacologia , Linhagem Celular , Imidazóis/farmacologia , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteína Quinase C/metabolismo , Quinoxalinas/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Regulação para Cima
10.
Clin Sci (Lond) ; 129(6): 461-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25989282

RESUMO

Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.


Assuntos
Angiotensina I/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Análise de Variância , Animais , Células Cultivadas , Técnicas In Vitro , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/patologia , Distribuição Aleatória , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/complicações , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Vasodilatadores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos
11.
Biofactors ; 41(2): 111-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25809912

RESUMO

Duchenne muscular dystrophy is a genetic disorder characterized by myofiber degeneration, muscle weakness, and increased fibrosis. Transforming growth factor type-ß (TGF-ß), a central mediator of fibrosis, is upregulated in fibrotic diseases. Angiotensin-(1-7) [Ang-(1-7)] is a peptide with actions that oppose those of angiotensin-II (Ang II). Ang-(1-7) effects are mediated by the Mas receptor. Treatment with Ang-(1-7) produce positive effects in the mdx mouse, normalizing skeletal muscle architecture, decreasing local fibrosis, and fibroblasts, and improving muscle function. Mdx mice deficient for the Mas receptor showed the opposite effects. To identify the cell type(s) responsible for Mas receptor expression, and to characterize whether profibrotic effectors had any effect on its expression, we determined the effect of profibrotic agents on Mas expression. TGF-ß, but not connective tissue growth factor or Ang-II, reduced the expression of Mas receptor in fibroblasts isolated from skeletal muscle cells and fibroblasts from two established cell lines. In contrast, no effects were observed in myoblasts and differentiated myotubes. This inhibition was mediated by the Smad-dependent (canonical) and the PI3K and MEK1/2 (noncanonical) TGF-ß signaling pathways. When both canonical and noncanonical inhibitors of the TGF-ß-dependent pathways were added together, the inhibitory effect of TGF-ß on Mas expression was lost. The decrease in Mas receptor induced by TGF-ß in fibroblasts reduced the Ang-(1-7) mediated stimulation of phosphorylation of AKT pathway proteins. These results suggest that reduction of Mas receptor in fibroblasts, by TGF-ß, could increase the fibrotic phenotype observed in dystrophic skeletal muscle decreasing the beneficial effect of Ang-(1-7).


Assuntos
Fibroblastos/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Angiotensina I/farmacologia , Angiotensina II/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Especificidade de Órgãos , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
Med Res Rev ; 35(3): 437-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25764065

RESUMO

Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Atrofia , Fibrose , Glucose/metabolismo , Humanos , Resistência à Insulina , Camundongos , Músculo Esquelético/patologia , Peptidil Dipeptidase A/fisiologia
13.
Pflugers Arch ; 467(9): 1975-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25292283

RESUMO

Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.


Assuntos
Angiotensina II/efeitos adversos , Angiotensina I/metabolismo , Apoptose/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Modelos Animais de Doenças , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Reação em Cadeia da Polimerase , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Clin Sci (Lond) ; 128(5): 307-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25222828

RESUMO

Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.


Assuntos
Angiotensina II/farmacologia , Angiotensina I/farmacologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/administração & dosagem , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Histochem Cell Biol ; 143(2): 131-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25208653

RESUMO

Skeletal muscle atrophy during sepsis, immobilization, and chronic diseases is characterized by an increase in expression and activity of the muscle-specific ubiquitin 3 ligases atrogin-1 and MuRF-1. The classical renin-angiotensin system (RAS), by high level of circulating angiotensin II (AngII) is directly involved in skeletal muscle wasting associated with cardiac and renal failure. Ang (1-7), a peptide belonging to the non-classical RAS system, produces effects that are opposite to AngII. The actions of Ang (1-7) are mediated by its binding and signalling through the Mas receptor. Our purpose is to assess the effects of atrophic stimuli AngII, lipopolysaccharide (LPS), and immobilization on the expression of the Mas receptor in skeletal muscle. For that we used gastrocnemius and tibialis anterior muscles of C57BL10 mice treated with AngII, LPS or subjected to unilateral hindlimb immobilization by casting. In addition, we used C2C12 myotubes incubated with AngII or LPS. We evaluated Mas expression by quantitative real-time PCR, Western blot immunohistochemical analysis. Skeletal muscle atrophy was corroborated by the expression of atrogin-1 and MuRF-1 and the fibre diameter. Our results show that Mas receptor expression was increased by AngII or LPS in vitro and in vivo, and upregulated by immobilization. The increase of the Mas expression was concomitantly with the upregulation of atrogin-1 and MuRF-1 and the reduction of the fibre diameter. These results from studies in vitro and in vivo demonstrate for the first time that the Mas receptor is increased under atrophic stimulus and suggest that the non-classical RAS system could have an important role in muscle wasting.


Assuntos
Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Regulação para Cima , Angiotensina II/farmacologia , Animais , Células Cultivadas , Immunoblotting , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Reação em Cadeia da Polimerase , Ligação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Skelet Muscle ; 4: 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157321

RESUMO

BACKGROUND: Fibrosis, an excessive collagen accumulation, results in scar formation, impairing function of vital organs and tissues. Fibrosis is a hallmark of muscular dystrophies, including the lethal Duchenne muscular dystrophy (DMD), which remains incurable. Substitution of muscle by fibrotic tissue also complicates gene/cell therapies for DMD. Yet, no optimal models to study muscle fibrosis are available. In the widely used mdx mouse model for DMD, extensive fibrosis develops in the diaphragm only at advanced adulthood, and at about two years of age in the 'easy-to-access' limb muscles, thus precluding fibrosis research and the testing of novel therapies. METHODS: We developed distinct experimental strategies, ranging from chronic exercise to increasing muscle damage on limb muscles of young mdx mice, by myotoxin injection, surgically induced trauma (laceration or denervation) or intramuscular delivery of profibrotic growth factors (such as TGFß). We also extended these approaches to muscle of normal non-dystrophic mice. RESULTS: These strategies resulted in advanced and enhanced muscle fibrosis in young mdx mice, which persisted over time, and correlated with reduced muscle force, thus mimicking the severe DMD phenotype. Furthermore, increased fibrosis was also obtained by combining these procedures in muscles of normal mice, mirroring aberrant repair after severe trauma. CONCLUSIONS: We have developed new and improved experimental strategies to accelerate and enhance muscle fibrosis in vivo. These strategies will allow rapidly assessing fibrosis in the easily accessible limb muscles of young mdx mice, without necessarily having to use old animals. The extension of these fibrogenic regimes to the muscle of non-dystrophic wild-type mice will allow fibrosis assessment in a wide array of pre-existing transgenic mouse lines, which in turn will facilitate understanding the mechanisms of fibrogenesis. These strategies should improve our ability to combat fibrosis-driven dystrophy progression and aberrant regeneration.

17.
Lab Invest ; 94(10): 1068-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25068653

RESUMO

During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-ß1 and TGF-ß2 and p38 MAPK phosphorylation. Downregulation of TGF-ß1 and TGF-ß2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-ß secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-ß-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.


Assuntos
Células Endoteliais/fisiologia , Transição Epitelial-Mesenquimal , Estresse Oxidativo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Miofibroblastos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Clin Sci (Lond) ; 127(4): 251-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24588264

RESUMO

AngII (angiotensin II) induces pathological conditions such as fibrosis in skeletal muscle. In this process, AngII increases ROS (reactive oxygen species) and induces a biphasic phosphorylation of p38 MAPK (mitogen-activated protein kinase). In addition, AngII stimulates the expression and production of TGF (transforming growth factor)-ß1 via a mechanism dependent on ROS production mediated by NADPH oxidase (NOX) and p38 MAPK activation. In the present study, we investigated whether Ang-(1-7) [angiotensin-(1-7)], through the Mas-1 receptor, can counteract the signalling induced by AngII in mouse skeletal muscle and cause a decrease in the expression and further activity of TGF-ß1 in skeletal muscle cells. Our results show that Ang-(1-7) decreased the expression of TGF-ß1 induced by AngII in a dose-dependent manner. In addition, we observed that Ang-(1-7) prevented the increase in TGF-ß1 expression induced by AngII, ROS production dependent on NOX and the early phase of p38 MAPK phosphorylation. Interestingly, Ang-(1-7) also prevented the late phase of p38 MAPK phosphorylation, Smad-2 phosphorylation and Smad-4 nuclear translocation, an increase in transcriptional activity, as determined using the p3TP-lux reporter, and fibronectin levels, all of which are dependent on the TGF-ß1 levels induced by AngII. We also demonstrated that Ang-(1-7) prevented the increase in TGF-ß1, fibronectin and collagen content in the diaphragm of mice infused with AngII. All of these effects were reversed by the administration of A779, indicating the participation of Mas-1. In conclusion, our findings support the hypothesis that Ang-(1-7) decreases the expression and further biological activity of TGF-ß1 induced by AngII in vitro and in vivo.


Assuntos
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/metabolismo , Proteína Smad4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Skelet Muscle ; 4: 6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24655808

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-ß) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. METHODS: mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-ß signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. RESULTS: mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-ß signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. CONCLUSIONS: These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

20.
Hum Mol Genet ; 22(24): 4938-51, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23904456

RESUMO

In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-ß (TGF-ß), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Apoptose/genética , Terapia Baseada em Transplante de Células e Tecidos , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibrose/genética , Genótipo , Sobrevivência de Enxerto/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Força Muscular/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/terapia , Transdução de Sinais , Proteínas Smad/metabolismo , Transplante de Células-Tronco , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...