Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8402, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114484

RESUMO

Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400-650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.


Assuntos
Corantes Fluorescentes , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Células HeLa
2.
EBioMedicine ; 94: 104691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480626

RESUMO

BACKGROUND: Radiotherapy is effective in the treatment of cancer but also causes damage to non-cancerous tissue. Pelvic radiotherapy may produce chronic and debilitating bowel symptoms, yet the underlying pathophysiology is still undefined. Most notably, although pelvic radiotherapy causes an acute intestinal inflammation there is no consensus on whether the late-phase pathophysiology contains an inflammatory component or not. To address this knowledge gap, we examined the potential presence of a chronic inflammation in mucosal biopsies from irradiated pelvic cancer survivors. METHODS: We biopsied 24 cancer survivors two to 20 years after pelvic radiotherapy, and four non-irradiated controls. Using tandem mass tag (TMT) mass spectrometry and mRNA sequencing (mRNA-seq), we charted proteomic and transcriptomic profiles of the mucosal tissue previously exposed to a high or a low/no dose of radiation. Changes in the immune cell populations were determined with flow cytometry. The integrity of the protective mucus layers were determined by permeability analysis and 16S rRNA bacterial detection. FINDINGS: 942 proteins were differentially expressed in mucosa previously exposed to a high radiation dose compared to a low radiation dose. The data suggested a chronic low-grade inflammation with neutrophil activity, which was confirmed by mRNA-seq and flow cytometry and further supported by findings of a weakened mucus barrier with bacterial infiltration. INTERPRETATION: Our results challenge the idea that pelvic radiotherapy causes an acute intestinal inflammation that either heals or turns fibrotic without progression to chronic inflammation. This provides a rationale for exploring novel strategies to mitigate chronic bowel symptoms in pelvic cancer survivors. FUNDING: This study was supported by the King Gustav V Jubilee Clinic Cancer Foundation (CB), The Adlerbertska Research Foundation (CB), The Swedish Cancer Society (GS), The Swedish State under the ALF agreement (GS and CB), Mary von Sydow's foundation (MA and VP).

3.
Immunity ; 55(12): 2336-2351.e12, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462502

RESUMO

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.


Assuntos
Colite , Mucosa Intestinal , Animais , Cicatrização , Células Epiteliais/metabolismo , Epitélio , Modelos Animais de Doenças
4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955604

RESUMO

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos Monoclonais , Bacteriófagos/genética , Bioprospecção , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana
5.
Mucosal Immunol ; 15(5): 940-951, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35840681

RESUMO

Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood. Here, we report that il10, il10ra, and il10rb are expressed in the zebrafish developing intestine as early as 3 days post fertilization. CRISPR/Cas9-generated il10-deficient zebrafish larvae showed an increased expression of pro-inflammatory genes and an increased number of intestinal goblet cells compared to WT larvae. Mechanistically, Il10 promotes Notch signaling in zebrafish intestinal epithelial cells, which in turn restricts goblet cell expansion. Using murine organoids, we showed that IL-10 modulates goblet cell frequencies in mammals, suggesting conservation across species. This study demonstrates a previously unappreciated IL-10-Notch axis regulating goblet cell homeostasis in the developing zebrafish intestine and may help explain the disease severity of IL-10 deficiency in the intestines of mammals.


Assuntos
Células Caliciformes , Peixe-Zebra , Animais , Contagem de Células , Diferenciação Celular/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Mamíferos , Camundongos , Transdução de Sinais , Peixe-Zebra/metabolismo
6.
Mucosal Immunol ; 15(3): 443-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264769

RESUMO

Goblet cells secrete mucin to create a protective mucus layer against invasive bacterial infection and are therefore essential for maintaining intestinal health. However, the molecular pathways that regulate goblet cell function remain largely unknown. Although GPR35 is highly expressed in colonic epithelial cells, its importance in promoting the epithelial barrier is unclear. In this study, we show that epithelial Gpr35 plays a critical role in goblet cell function. In mice, cell-type-specific deletion of Gpr35 in epithelial cells but not in macrophages results in goblet cell depletion and dysbiosis, rendering these animals more susceptible to Citrobacter rodentium infection. Mechanistically, scRNA-seq analysis indicates that signaling of epithelial Gpr35 is essential to maintain normal pyroptosis levels in goblet cells. Our work shows that the epithelial presence of Gpr35 is a critical element for the function of goblet cell-mediated symbiosis between host and microbiota.


Assuntos
Infecções por Enterobacteriaceae , Células Caliciformes , Animais , Citrobacter rodentium , Colo/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Células Caliciformes/fisiologia , Mucosa Intestinal/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Nat Commun ; 13(1): 828, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149721

RESUMO

The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.


Assuntos
Intestinos/metabolismo , Transcriptoma , Cicatrização , Animais , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Células Epiteliais , Feminino , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Transdução de Sinais
8.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792120

RESUMO

The intestinal epithelium is continuously exposed to deleterious environmental factors that might cause aberrant immune responses leading to inflammatory disorders. However, what environmental factors might contribute to disease are poorly understood. Here, to overcome the lack of in vivo models suitable for screening of environmental factors, we used zebrafish reporters of intestinal inflammation. Using zebrafish, we interrogated the immunomodulatory effects of polyfluoroalkyl substances, which have been positively associated with ulcerative colitis incidence. Exposure to perfluorooctanesulfonic acid (PFOS) during 2,4,6-trinitro-benzene sulfonic acid (TNBS)-induced inflammation enhanced the expression of proinflammatory cytokines as well as neutrophil recruitment to the intestine of zebrafish larvae, which was validated in the TNBS-induced colitis mouse model. Moreover, PFOS exposure in mice undergoing colitis resulted in neutrophil-dependent increased intestinal permeability and enhanced PFOS translocation into the circulation. This was associated with a neutrophil-dependent expansion of systemic CD4+ T cells. Thus, our results indicate that PFOS worsens inflammation-induced intestinal damage with disruption of T-cell homeostasis beyond the gut and provides a novel in vivo toolbox to screen for pollutants affecting intestinal homeostasis.


Assuntos
Colite , Peixe-Zebra , Ácidos Alcanossulfônicos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fluorocarbonos , Homeostase , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ácido Trinitrobenzenossulfônico/metabolismo , Peixe-Zebra/metabolismo
9.
Vaccines (Basel) ; 9(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451980

RESUMO

The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.

10.
ACS Pharmacol Transl Sci ; 3(4): 720-736, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832873

RESUMO

We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.

11.
Cell Rep ; 32(5): 107979, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755573

RESUMO

Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Homeostase , Intestinos/fisiologia , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Microbioma Gastrointestinal , Deleção de Genes , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
12.
Reprod Toxicol ; 93: 163-168, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32109521

RESUMO

Nuclear receptors (NRs) rapidly activate/repress gene expression to detour immune responses and allow tissue adaptation to constant environmental changes. However, the effect of combined NRs in the immune system is often unclear due to the lack of reliable experimental models that recapitulate the complex interaction between NRs in vivo. Here, we used the zebrafish to investigate the immunological outcome of combining the activation of retinoic acid receptor (RAR), liver X receptor (LXR) and the cytoplasmic sensor aryl hydrocarbon receptor (AHR). Although simultaneous activation did not affect the expression of respective bona-fide target genes, RAR-induced il17a/f3 was antagonized by LXR and AHR, whereas il22 was antagonized by AHR but not LXR. In addition, RA decreased il10 expression, which was further decreased by LXR activation. Thus, using combinatorial NR activation in zebrafish larvae, we show that LXR antagonizes the expression of selected RA-induced cytokines and provide a strategy to tailor the cytokine milieu.


Assuntos
Citocinas/genética , Receptores X do Fígado/metabolismo , Tretinoína/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores do Ácido Retinoico/metabolismo , Peixe-Zebra
13.
Sci Rep ; 10(1): 2191, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042056

RESUMO

Autophagy is an evolutionarily conserved process that plays a key role in the maintenance of overall cellular health. While it has been suggested that autophagy may elicit cardioprotective and pro-survival modulating functions, excessive activation of autophagy can also be detrimental. In this regard, the zebrafish is considered a hallmark model for vertebrate regeneration, since contrary to adult mammals, it is able to faithfully regenerate cardiac tissue. Interestingly, the role that autophagy may play in zebrafish heart regeneration has not been studied yet. In the present work, we hypothesize that, in the context of a well-established injury model of ventricular apex resection, autophagy plays a critical role during cardiac regeneration and its regulation can directly affect the zebrafish regenerative potential. We studied the autophagy events occurring upon injury using electron microscopy, in vivo tracking of autophagy markers, and protein analysis. Additionally, using pharmacological tools, we investigated how rapamycin, an inducer of autophagy, affects regeneration relevant processes. Our results show that a tightly regulated autophagic response is triggered upon injury and during the early stages of the regeneration process. Furthermore, treatment with rapamycin caused an impairment in the cardiac regeneration outcome. These findings are reminiscent of the pathophysiological description of an injured human heart and hence put forward the zebrafish as a model to study the poorly understood double-sword effect that autophagy has in cardiac homeostasis.


Assuntos
Autofagia/fisiologia , Coração/fisiologia , Regeneração/fisiologia , Animais , Proliferação de Células/fisiologia , Ventrículos do Coração/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
14.
Mar Biotechnol (NY) ; 22(2): 207-219, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981004

RESUMO

Cnidarians are one of the oldest known animal lineages (ca. 700 million years), with a unique envenomation apparatus to deliver a potent mixture of peptides and proteins. Some peptide toxins from cnidarian venom have proven therapeutic potential. Here, we use a transcriptomic/proteomic strategy to identify sequences with similarity to known venom protein families in the tentacles of the endemic Australian 'speckled anemone' (Oulactis sp.). Illumina RNASeq data were assembled de novo. Annotated sequences in the library were verified by cross-referencing individuals' transcriptomes or protein expression evidence from LC-MS/MS data. Sequences include pore-forming toxins, phospholipases, peptidases, neurotoxins (sodium and potassium channel modulators), cysteine-rich secretory proteins and defensins (antimicrobial peptides). Fewer than 4% of the sequences in the library occurred across the three individuals examined, demonstrating high sequence variability of an individual's arsenal. We searched for actinoporins in Oulactis sp. to assess sequence similarity to the only described toxins (OR-A and -G) for this genus and examined the domain architecture of venom-related peptides and proteins. The novel putative actinoporin of Oulactis sp. has a greater similarity to other species in the Actiniidae family than to O. orientalis. Venom-related sequences have an architecture that occurs in single, repeat or multi-domain combinations of venom-related (e.g. ShK-like) and non-venom (e.g. whey acid protein) domains. This study has produced the first transcriptomes for an endemic Australian sea anemone species and the genus Oulactis, while identifying nearly 400 novel venom-related peptides and proteins for future structural and functional analyses and venom evolution studies.


Assuntos
Venenos de Cnidários/química , Anêmonas-do-Mar/química , Transcriptoma , Animais , Cromatografia Líquida , Venenos de Cnidários/genética , Proteoma/análise , Anêmonas-do-Mar/genética , Espectrometria de Massas em Tandem
15.
Sci Rep ; 9(1): 19307, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848433

RESUMO

ShK is a 35-residue disulfide-linked polypeptide produced by the sea anemone Stichodactyla helianthus, which blocks the potassium channels Kv1.1 and Kv1.3 with pM affinity. An analogue of ShK has been developed that blocks Kv1.3 > 100 times more potently than Kv1.1, and has completed Phase 1b clinical trials for the treatment of autoimmune diseases such as psoriasis and rheumatoid arthritis. Previous studies have indicated that ShK undergoes a conformational exchange that is critical to its function, but this has proved difficult to characterise. Here, we have used high hydrostatic pressure as a tool to increase the population of the alternative state, which is likely to resemble the active form that binds to the Kv1.3 channel. By following changes in chemical shift with pressure, we have derived the chemical shift values of the low- and high-pressure states, and thus characterised the locations of structural changes. The main difference is in the conformation of the Cys17-Cys32 disulfide, which is likely to affect the positions of the critical Lys22-Tyr23 pair by twisting the 21-24 helix and increasing the solvent exposure of the Lys22 sidechain, as indicated by molecular dynamics simulations.


Assuntos
Venenos de Cnidários/química , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Sequência de Aminoácidos/genética , Animais , Doenças Autoimunes/tratamento farmacológico , Venenos de Cnidários/genética , Venenos de Cnidários/farmacologia , Humanos , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/ultraestrutura , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/ultraestrutura , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/genética , Bloqueadores dos Canais de Potássio/farmacologia , Anêmonas-do-Mar/química
16.
Dev Neurosci ; 41(1-2): 112-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390621

RESUMO

The study of spinal cord regeneration using diverse animal models, which range from null to robust regenerative capabilities, is imperative for understanding how regeneration evolved and, eventually, to treat spinal cord injury and paralysis in humans. In this study, we used electroablation to fully transect the spinal cord of zebrafish larvae (3 days postfertilization) and examined regeneration of the tissue over time. We used transgenic lines to follow immune cells, oligodendrocytes, and neurons in vivo during the entire regenerative process. We observed that immune cells are recruited to the injury site, oligodendrocytes progenitor cells (olig2-expressing cells) invade, and axons cross the gap generated upon damage from anterior to reinnervate caudal structures. Together with the recovery of cell types and structures, a complete reversal of paralysis was observed in the lesioned larvae indicating functional regeneration. Finally, using transplantation to obtain mosaic larvae with single-labeled neurons, we show that severed spinal axons exhibited varying regenerative capabilities and plasticity depending on their original dorsoventral position in the spinal cord.


Assuntos
Neurogênese/fisiologia , Regeneração da Medula Espinal/fisiologia , Animais , Larva , Peixe-Zebra
17.
Front Immunol ; 10: 253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891030

RESUMO

The role of macrophages during regeneration in zebrafish has been well-documented. Nevertheless, new evidence indicates that zebrafish macrophages are a heterogeneous population of cells, and that they can play different roles during immune responses and in tissue restoration after damage and infection. In this work, we first aimed to classify zebrafish macrophages according to their distribution in the larva during homeostasis and after tissue damage, distinguishing peripheral, and hematopoietic tissue resident macrophages. We discovered differences between the migratory behavior of these two macrophage populations both before and after tissue damage, triggered by the amputation of the tail fin. Further, we found a specific role for peripheral tissue-resident macrophages, and we propose that these cells contribute to tail fin regeneration by down-regulating inflammatory mediators such as interleukin-1b (il1b) and by diminishing reactive oxygen species (ROS) in the damage site. Our work suggests that specific macrophage populations recruited after tissue damage in zebrafish larvae can display different functions during both inflammation and tissue regeneration.


Assuntos
Inflamação/imunologia , Macrófagos/fisiologia , Regeneração/fisiologia , Animais , Homeostase , Interleucina-1beta/fisiologia , Proteínas Tirosina Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
18.
Commun Biol ; 1: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271940

RESUMO

Transient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope. A combination of these experimental data with molecular dynamics simulations shows clearly that the polymorphic C-terminal extension engages in multiple transient interactions distributed across much of the accessible antibody surface. These interactions are determined more by topographical features of the antibody surface than by sequence-specific interactions. Thus, specificity arises as a consequence of subtle differences in what are highly dynamic and essentially non-specific interactions.

19.
Sci Rep ; 8(1): 11519, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068931

RESUMO

Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Xenoenxertos , Camundongos , Transplante de Neoplasias , Resultado do Tratamento , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...