Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5860, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467726

RESUMO

Atrial fibrillation (AF) is the most common human arrhythmia, forming thrombi mostly in the left atrial appendage (LAA). However, the relation between LAA morphology, blood patterns and clot formation is not yet fully understood. Furthermore, the impact of anatomical structures like the pulmonary veins (PVs) have not been thoroughly studied due to data acquisition difficulties. In-silico studies with flow simulations provide a detailed analysis of blood flow patterns under different boundary conditions, but a limited number of cases have been reported in the literature. To address these gaps, we investigated the influence of PVs on LA blood flow patterns and thrombus formation risk through computational fluid dynamics simulations conducted on a sizeable cohort of 130 patients, establishing the largest cohort of patient-specific LA fluid simulations reported to date. The investigation encompassed an in-depth analysis of several parameters, including pulmonary vein orientation (e.g., angles) and configuration (e.g., number), LAA and LA volumes as well as their ratio, flow, and mass-less particles. Our findings highlight the total number of particles within the LAA as a key parameter for distinguishing between the thrombus and non-thrombus groups. Moreover, the angles between the different PVs play an important role to determine the flow going inside the LAA and consequently the risk of thrombus formation. The alignment between the LAA and the main direction of the left superior pulmonary vein, or the position of the right pulmonary vein when it exhibits greater inclination, had an impact to distinguish the control group vs. the thrombus group. These insights shed light on the intricate relationship between PV configuration, LAA morphology, and thrombus formation, underscoring the importance of comprehensive blood flow pattern analyses.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Veias Pulmonares , Trombose , Humanos , Apêndice Atrial/diagnóstico por imagem , Veias Pulmonares/diagnóstico por imagem , Ecocardiografia Transesofagiana , Átrios do Coração/diagnóstico por imagem , Fibrilação Atrial/diagnóstico por imagem
3.
Mol Cancer ; 22(1): 86, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210549

RESUMO

BACKGROUND: The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS: Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS: PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS: Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Membrana Transportadoras , Neoplasias Pancreáticas , Humanos , Autofagia/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Pulmão/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Pancreáticas
4.
Bioeng Transl Med ; 7(3): e10331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176621

RESUMO

The analysis of circulating tumor cells (CTCs) in blood is a powerful noninvasive alternative to conventional tumor biopsy. Inertial-based separation is a promising high-throughput, marker-free sorting strategy for the enrichment and isolation of CTCs. Here, we present and validate a double spiral microfluidic device that efficiently isolates CTCs with a fine-tunable cut-off value of 9 µm and a separation range of 2 µm. We designed the device based on computer simulations that introduce a novel, customized inertial force term, and provide practical fabrication guidelines. We validated the device using calibration beads, which allowed us to refine the simulations and redesign the device. Then we validated the redesigned device using blood samples and a murine model of metastatic breast cancer. Finally, as a proof of principle, we tested the device using peripheral blood from a patient with hepatocellular carcinoma, isolating more than 17 CTCs/ml, with purity/removal values of 96.03% and 99.99% of white blood cell and red blood cells, respectively. These results confirm highly efficient CTC isolation with a stringent cut-off value and better separation results than the state of the art.

5.
Cancer Discov ; 12(5): 1356-1377, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191482

RESUMO

ABSTRACT: Locoregional failure (LRF) in patients with breast cancer post-surgery and post-irradiation is linked to a dismal prognosis. In a refined new model, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1/CD203a (ENPP1) to be closely associated with LRF. ENPP1hi circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of polymorphonuclear myeloid-derived suppressor cells and neutrophil extracellular trap (NET) formation. Genetic and pharmacologic ENPP1 inhibition or NET blockade extends relapse-free survival. Furthermore, in combination with fractionated irradiation, ENPP1 abrogation obliterates LRF. Mechanistically, ENPP1-generated adenosinergic metabolites enhance haptoglobin (HP) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse. SIGNIFICANCE: CTC exploit the ENPP1/HP axis to promote local recurrence post-surgery and post-irradiation by subduing myeloid suppressor cells in breast tumors. Blocking this axis impairs tumor engraftment, impedes immunosuppression, and obliterates NET formation, unveiling new opportunities for therapeutic intervention to eradicate local relapse and ameliorate patient survival. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Feminino , Haptoglobinas , Humanos , Células Supressoras Mieloides/metabolismo , Recidiva Local de Neoplasia/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo
6.
Bioinformatics ; 38(6): 1491-1496, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978563

RESUMO

MOTIVATION: Isoform deconvolution is an NP-hard problem. The accuracy of the proposed solutions is far from perfect. At present, it is not known if gene structure and isoform concentration can be uniquely inferred given paired-end reads, and there is no objective method to select the fragment length to improve the number of identifiable genes. Different pieces of evidence suggest that the optimal fragment length is gene-dependent, stressing the need for a method that selects the fragment length according to a reasonable trade-off across all the genes in the whole genome. RESULTS: A gene is considered to be identifiable if it is possible to get both the structure and concentration of its transcripts univocally. Here, we present a method to state the identifiability of this deconvolution problem. Assuming a given transcriptome and that the coverage is sufficient to interrogate all junction reads of the transcripts, this method states whether or not a gene is identifiable given the read length and fragment length distribution. Applying this method using different read and fragment length combinations, the optimal average fragment length for the human transcriptome is around 400-600 nt for coding genes and 150-200 nt for long non-coding RNAs. The optimal read length is the largest one that fits in the fragment length. It is also discussed the potential profit of combining several libraries to reconstruct the transcriptome. Combining two libraries of very different fragment lengths results in a significant improvement in gene identifiability. AVAILABILITY AND IMPLEMENTATION: Code is available in GitHub (https://github.com/JFerrer-B/transcriptome-identifiability). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Transcriptoma , Humanos , RNA-Seq , Biblioteca Gênica , Isoformas de Proteínas/genética , Software
7.
Cancer Lett ; 529: 70-84, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971753

RESUMO

Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.


Assuntos
Complemento C5a/imunologia , Armadilhas Extracelulares/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor da Anafilatoxina C5a/metabolismo
8.
Biomolecules ; 11(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680167

RESUMO

Collapsin response mediator protein 2 (CRMP2) is an adaptor protein that adds tubulin dimers to the growing tip of a microtubule. First described in neurons, it is now considered a ubiquitous protein that intervenes in processes such as cytoskeletal remodeling, synaptic connection and trafficking of voltage channels. Mounting evidence supports that CRMP2 plays an essential role in neuropathology and, more recently, in cancer. We have previously described a positive correlation between nuclear phosphorylation of CRMP2 and poor prognosis in lung adenocarcinoma patients. In this work, we studied whether this cytoskeleton molding protein is involved in cancer cell migration. To this aim, we evaluated CRMP2 phosphorylation and localization in the extending lamella of lung adenocarcinoma migrating cells using in vitro assays and in vivo confocal microscopy. We demonstrated that constitutive phosphorylation of CRMP2 impaired lamella formation, cell adhesion and oriented migration. In search of a mechanistic explanation of this phenomenon, we discovered that CRMP2 Ser522 phospho-mimetic mutants display unstable tubulin polymers, unable to bind EB1 plus-Tip protein and the cortical actin adaptor IQGAP1. In addition, integrin recycling is defective and invasive structures are less evident in these mutants. Significantly, mouse xenograft tumors of NSCLC expressing CRMP2 phosphorylation mimetic mutants grew significantly less than wild-type tumors. Given the recent development of small molecule inhibitors of CRMP2 phosphorylation to treat neurodegenerative diseases, our results open the door for their use in cancer treatment.


Assuntos
Adenocarcinoma de Pulmão/genética , Movimento Celular/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Proteínas Ativadoras de ras GTPase/genética , Adenocarcinoma de Pulmão/patologia , Animais , Proliferação de Células/genética , Citoesqueleto/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Microtúbulos/genética , Fosforilação/genética , Tubulina (Proteína)/genética
9.
Virulence ; 12(1): 1672-1688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252004

RESUMO

Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.


Assuntos
Modelos Animais de Doenças , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Progressão da Doença , Infecções por Haemophilus , Haemophilus influenzae , Humanos , Camundongos , Elastase Pancreática , Fenótipo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/microbiologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/diagnóstico por imagem
10.
Gels ; 7(1)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673091

RESUMO

Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.

11.
Nat Commun ; 12(1): 421, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462210

RESUMO

Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD.


Assuntos
Antineoplásicos/farmacologia , Doenças Ósseas/tratamento farmacológico , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Doenças Ósseas/diagnóstico , Doenças Ósseas/genética , Doenças Ósseas/patologia , Medula Óssea/patologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/complicações , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hum Mol Genet ; 29(19): 3211-3223, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916704

RESUMO

The morphological changes that occur in the central nervous system of patients with severe acute intermittent porphyria (AIP) have not yet been clearly established. The aim of this work was to analyze brain involvement in patients with severe AIP without epileptic seizures or clinical posterior reversible encephalopathy syndrome, as well as in a mouse model receiving or not liver-directed gene therapy aimed at correcting the metabolic disorder. We conducted neuroradiologic studies in 8 severely affected patients (6 women) and 16 gender- and age-matched controls. Seven patients showed significant enlargement of the cerebral ventricles and decreased brain perfusion was observed during the acute attack in two patients in whom perfusion imaging data were acquired. AIP mice exhibited reduced cerebral blood flow and developed chronic dilatation of the cerebral ventricles even in the presence of slightly increased porphyrin precursors. While repeated phenobarbital-induced attacks exacerbated ventricular dilation in AIP mice, correction of the metabolic defect using liver-directed gene therapy restored brain perfusion and afforded protection against ventricular enlargement. Histological studies revealed no signs of neuronal loss but a denser neurofilament pattern in the periventricular areas, suggesting compression probably caused by imbalance in cerebrospinal fluid dynamics. In conclusion, severely affected AIP patients exhibit cerebral ventricular enlargement. Liver-directed gene therapy protected against the morphological consequences of the disease seen in the brain of AIP mice. The observational study was registered at Clinicaltrial.gov as NCT02076763.


Assuntos
Encéfalo/patologia , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Hidroximetilbilano Sintase/genética , Porfiria Aguda Intermitente/fisiopatologia , Adulto , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Ventrículos Cerebrais/metabolismo , Ensaios Clínicos Fase I como Assunto , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/metabolismo , Estudos Prospectivos
13.
PLoS One ; 15(1): e0220019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945053

RESUMO

The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing. Here, we present a comprehensive, quantitative analysis of the role of cell-ECM interactions in cancer cell migration within a highly physiological environment consisting of mixed Matrigel-collagen hydrogel scaffolds of increasing complexity that mimic the tumor microenvironment at the leading edge of cancer invasion. We quantitatively show that the presence of Matrigel increases hydrogel stiffness, which promotes ß1 integrin expression and metalloproteinase activity in H1299 lung cancer cells. Then, we show that ECM remodeling activity causes matrix alignment and compaction that favors higher tractions exerted by the cells. However, these traction forces do not linearly translate into increased motility due to a biphasic role of cell adhesions in cell migration: at low concentration Matrigel promotes migration-effective tractions exerted through a high number of small sized focal adhesions. However, at high Matrigel concentration, traction forces are exerted through fewer, but larger focal adhesions that favor attachment yielding lower cell motility.


Assuntos
Colágeno/farmacologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Laminina/farmacologia , Mecanotransdução Celular , Proteoglicanas/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adesões Focais/ultraestrutura , Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina/química , Modelos Biológicos , Proteoglicanas/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Propriedades de Superfície , Microambiente Tumoral/efeitos dos fármacos
14.
Sci Rep ; 8(1): 6872, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720703

RESUMO

Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidade , Lipoproteínas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Mucosa Respiratória/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Feminino , Infecções por Haemophilus/microbiologia , Humanos , Camundongos , Mucosa Respiratória/microbiologia
15.
Genome Biol ; 18(1): 202, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078818

RESUMO

BACKGROUND: It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. RESULTS: Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. CONCLUSIONS: Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci.


Assuntos
Invasividade Neoplásica , RNA Longo não Codificante/química , RNA Longo não Codificante/fisiologia , Animais , Sequência de Bases , Movimento Celular , Sequência Conservada , Regulação para Baixo , Inativação Gênica , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Complexo Repressor Polycomb 2/metabolismo
16.
PLoS One ; 12(8): e0181579, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767724

RESUMO

Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether ß3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-ß induction of ß3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-ß exposure. Invadopodia formation and degradation activity is dependent on ß3 integrin expression since ß3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in ß3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for ß3 integrin in invadopodia. Our results suggest that ß3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. ß3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Matriz Extracelular/metabolismo , Integrina beta3/metabolismo , Neoplasias Pulmonares/metabolismo , Podossomos/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células A549 , Adesão Celular , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Podossomos/efeitos dos fármacos , Transdução de Sinais , Quinases da Família src/metabolismo
17.
PLoS One ; 12(2): e0171417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166248

RESUMO

Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.


Assuntos
Movimento Celular , Colágeno , Laminina , Microfluídica , Proteoglicanas , Alicerces Teciduais , Linhagem Celular Tumoral , Colágeno/química , Colágeno/ultraestrutura , Difusão , Combinação de Medicamentos , Matriz Extracelular , Humanos , Hidrogéis , Laminina/química , Laminina/ultraestrutura , Fenômenos Mecânicos , Microfluídica/métodos , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Proteoglicanas/química , Proteoglicanas/ultraestrutura , Esferoides Celulares , Alicerces Teciduais/química , Células Tumorais Cultivadas , Microambiente Tumoral
18.
Mol Oncol ; 10(9): 1437-1449, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27555542

RESUMO

Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.


Assuntos
Processamento Alternativo/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Clatrina/metabolismo , Citoesqueleto/metabolismo , Regulação para Baixo , Éxons/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Sinaptotagminas/metabolismo
19.
Mol Cancer ; 13: 112, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24884715

RESUMO

BACKGROUND: Transforming Growth Factor beta (TGF-ß) acts as a tumor suppressor early in carcinogenesis but turns into tumor promoter in later disease stages. In fact, TGF-ß is a known inducer of integrin expression by tumor cells which contributes to cancer metastatic spread and TGF-ß inhibition has been shown to attenuate metastasis in mouse models. However, carcinoma cells often become refractory to TGF-ß-mediated growth inhibition. Therefore identifying patients that may benefit from anti-TGF-ß therapy requires careful selection. METHODS: We performed in vitro analysis of the effects of exposure to TGF-ß in NSCLC cell chemotaxis and adhesion to lymphatic endothelial cells. We also studied in an orthotopic model of NSCLC the incidence of metastases to the lymph nodes after inhibition of TGF-ß signaling, ß3 integrin expression or both. RESULTS: We offer evidences of increased ß3-integrin dependent NSCLC adhesion to lymphatic endothelium after TGF-ß exposure. In vivo experiments show that targeting of TGF-ß and ß3 integrin significantly reduces the incidence of lymph node metastasis. Even more, blockade of ß3 integrin expression in tumors that did not respond to TGF-ß inhibition severely impaired the ability of the tumor to metastasize towards the lymph nodes. CONCLUSION: These findings suggest that lung cancer tumors refractory to TGF-ß monotherapy can be effectively treated using dual therapy that combines the inhibition of tumor cell adhesion to lymphatic vessels with stromal TGF-ß inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Regulação Neoplásica da Expressão Gênica , Integrina beta3/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Fator de Crescimento Transformador beta1/genética , Animais , Anticorpos Monoclonais/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Integrina beta3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática , Camundongos , Terapia de Alvo Molecular , Molécula L1 de Adesão de Célula Nervosa/antagonistas & inibidores , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...