Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513134

RESUMO

In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship with the resistive state. The simulation data are compared with the experimental current-voltage data of Si-NCs/SiO2 multilayer-based memristor devices. Devices with 1 and 3 Si-NCs/SiO2 bilayers were analyzed. The Si-NCs are assumed as agglomerates of fixed oxygen vacancies, which promote the formation of conductive filaments (CFs) through the multilayer according to the simulations. In fact, an intermediate resistive state was observed in the forming process (experimental and simulated) of the 3-BL device, which is explained by the preferential generation of oxygen vacancies in the sites that form the complete CFs, through Si-NCs.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985880

RESUMO

In this work, we report the digital and analog resistive-switching (RS) characteristics in a memristor based on silicon nanocrystals (Si-NCs) integrated into a complementary metal-oxide-semiconductor (MOS) structure. Si-NCs with a diameter of 5.48 ± 1.24 nm embedded in a SiO2/Si-NCs/SiO2 multilayer structure acts as an RS layer. These devices exhibit bipolar RS with an intermediate resistance step during SET and RESET processes, which is believed to lie in the Si-NCs layer acting as charge-trapping nodes. The endurance studies of about 70 DC cycles indicate an ON/OFF ratio of ~106 and a retention time larger than 104 s. Long-term potentiation (LTP, -2 V) and long-term depression (LTD, +4 V) are obtained by applying consecutive identical pulse voltages of 150 ms duration. The current value gradually increases/decreases (LTP/LTD) as the pulse number increases. Three consecutive identical pulses of -2 V/150 ms (LTP) separated by 5 and 15 min show that the last current value obtained at the end of each pulse train is kept, confirming an analog RS behavior. These characteristics provide a possible way to mimic biological synapse functions for applications in neuromorphic computing in Si-NCs-based CMOS structures.

3.
Micromachines (Basel) ; 13(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363969

RESUMO

In this work, we explored the feasibility of the fabrication of PIN light-emitting diodes (LEDs) consisting of heterojunctions of amorphous silicon-carbide (a-Si1-xCx:H) thin films and crystalline silicon wafers (c-Si). The objective is the future development of electro-photonic systems in the same c-Si wafer, containing transistors, sensors, LEDs and waveguides. Two different heterojunction LEDs were fabricated consisting of PIN and PIN+N structures, where a-Si1-xCx:H thin films were used as P-type and I-type layers, while an N-type c-Si substrate was used as an active part of the device. The amorphous layers were deposited by the plasma-enhanced chemical vapor deposition (PECVD) technique at a substrate temperature of 200 °C. The PIN device presented electroluminescence (EL) only in the forward bias, while the PIN+N device presented in both the forward and reverse biases. The EL in reverse bias was possible due to the addition of an N+-type a-Si:H layer between the c-Si substrate and the I-type a-Si1-xCx:H active layer. Likewise, the EL intensity of the PIN+N structure was higher than that of the PIN device in forward bias, indicating that the addition of the N-type a-Si:H layer makes electrons flow more efficiently to the I layer. In addition, both devices presented red EL in the full area, which is observed with the naked eye.

4.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745354

RESUMO

In this work, we show a correlation between the composition and the microstructural and optical properties of bright and uniform luminescent porous silicon (PSi) films. PSi films were synthesized by electrochemical etching using nitric acid in an electrolyte solution. PSi samples synthesized with nitric acid emit stronger (up to six-fold greater) photoluminescence (PL) as compared to those obtained without it. The PL peak is shifted from 630 to 570 nm by changing the concentration ratio of the HF:HNO3:(EtOH-H2O) electrolyte solution, but also shifts with the excitation energy, indicating quantum confinement effects in the silicon nanocrystals (Si-NCs). X-ray photoelectron spectroscopy analysis shows a uniform silicon content in the PSi samples that emit the strongest PL. High-resolution transmission electron microscopy reveals that the Si-NCs in these PSi samples are about ~2.9 ± 0.76 nm in size and are embedded in a dense and stoichiometric SiO2 matrix, as indicated by the Fourier transform infrared analysis. On the other hand, the PSi films that show PL of low intensity present an abrupt change in the silicon content depth and the formation of non-bridging oxygen hole center defects.

5.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772107

RESUMO

Two multilayer (ML) structures, composed of five layers of silicon-rich oxide (SRO) with different Si contents and a sixth layer of silicon-rich nitride (SRN), were deposited by low pressure chemical vapor deposition. These SRN/SRO MLs were thermally annealed at 1100 °C for 180 min in ambient N2 to induce the formation of Si nanostructures. For the first ML structure (MLA), the excess Si in each SRO layer was about 10.7 ± 0.6, 9.1 ± 0.4, 8.0 ± 0.2, 9.1 ± 0.3 and 9.7 ± 0.4 at.%, respectively. For the second ML structure (MLB), the excess Si was about 8.3 ± 0.2, 10.8 ± 0.4, 13.6 ± 1.2, 9.8 ± 0.4 and 8.7 ± 0.1 at.%, respectively. Si nanopyramids (Si-NPs) were formed in the SRO/Si substrate interface when the SRO layer with the highest excess silicon (10.7 at.%) was deposited next to the MLA substrate. The height, base and density of the Si-NPs was about 2-8 nm, 8-26 nm and ~6 × 1011 cm-2, respectively. In addition, Si nanocrystals (Si-ncs) with a mean size of between 3.95 ± 0.20 nm and 2.86 ± 0.81 nm were observed for the subsequent SRO layers. Meanwhile, Si-NPs were not observed when the excess Si in the SRO film next to the Si-substrate decreased to 8.3 ± 0.2 at.% (MLB), indicating that there existed a specific amount of excess Si for their formation. Si-ncs with mean size of 2.87 ± 0.73 nm and 3.72 ± 1.03 nm were observed for MLB, depending on the amount of excess Si in the SRO film. An enhanced photoluminescence (PL) emission (eight-fold more) was observed in MLA as compared to MLB due to the presence of the Si-NPs. Therefore, the influence of graded silicon content in SRN/SRO multilayer structures on the formation of Si-NPs and Si-ncs, and their relation to the PL emission, was analyzed.

6.
Sensors (Basel) ; 18(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510482

RESUMO

Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 µW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...