Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(5): 595-606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36964781

RESUMO

The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVß4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.


Assuntos
Distrofina , Proteômica , Animais , Distrofina/genética , Distrofina/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
2.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255148

RESUMO

The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1's actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.


Assuntos
Sinalização do Cálcio/genética , Mitocôndrias/genética , Dor/genética , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Nociceptividade/fisiologia , Dor/fisiopatologia , Transdução de Sinais/genética
3.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481620

RESUMO

Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.


Assuntos
Canais de Cátion TRPV/fisiologia , Animais , Cálcio/metabolismo , Bovinos , Endotélio Vascular/metabolismo , Humanos , Rim/metabolismo , Camundongos , Microcirculação , Dor/metabolismo , Permeabilidade , Prognóstico , Domínios Proteicos , Ratos , Vasos Retinianos , Pele/metabolismo
4.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471309

RESUMO

Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.


Assuntos
Androgênios/metabolismo , Estrogênios/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
5.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408609

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1) channel is a polymodal protein with functions widely linked to the generation of pain. Several agonists of exogenous and endogenous nature have been described for this ion channel. Nonetheless, detailed mechanisms and description of binding sites have been resolved only for a few endogenous agonists. This review focuses on summarizing discoveries made in this particular field of study and highlighting the fact that studying the molecular details of activation of the channel by different agonists can shed light on biophysical traits that had not been previously demonstrated.


Assuntos
Ativação do Canal Iônico , Domínios Proteicos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Animais , Sítios de Ligação/genética , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Canais de Cátion TRPV/genética
6.
Curr Top Med Chem ; 15(7): 581-603, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25686735

RESUMO

Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.


Assuntos
Canais Iônicos/química , Canais Iônicos/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Animais , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Ligantes , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
7.
J Neurochem ; 112(2): 474-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19943855

RESUMO

In this study, we delineated the molecular mechanisms that modulate Dp71 expression during neuronal differentiation, using the N1E-115 cell line. We demonstrated that Dp71 expression is up-regulated in response to cAMP-mediated neuronal differentiation of these cells, and that this induction is controlled at promoter level. Functional deletion analysis of the Dp71 promoter revealed that a 5'-flanking 159-bp DNA fragment that contains Sp1 and AP2 binding sites is necessary and sufficient for basal expression of this TATA-less promoter, as well as for its induction during neuronal differentiation. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that Sp1 and AP2alpha bind to their respective DNA elements within the Dp71 basal promoter. Overall, mutagenesis assays on the Sp1 and AP2 binding sites, over-expression of Sp1 and AP2alpha, as well as knock-down experiments on Sp1 and AP2alpha gene expression established that Dp71 basal expression is controlled by the combined action of Sp1 and AP2alpha, which act as activator and repressor, respectively. Furthermore, we demonstrated that induction of Dp71 expression in differentiated cells is the result of the maintenance of positive regulation exerted by Sp1, as well as of the loss of AP2alpha binding, which ultimately releases the promoter from repression.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Distrofina/metabolismo , Imunoglobulinas/metabolismo , Neurônios/fisiologia , Animais , Encéfalo/citologia , Bucladesina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cloranfenicol O-Acetiltransferase/metabolismo , Imunoprecipitação da Cromatina/métodos , Dimetil Sulfóxido/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas de Ligação a Ácido Graxo , Sequestradores de Radicais Livres/farmacologia , Camundongos , Mutagênese Sítio-Dirigida/métodos , Neuroblastoma , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Transfecção/métodos , Regulação para Cima/fisiologia , beta-Galactosidase/metabolismo
8.
J Biol Chem ; 280(7): 5290-9, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15550398

RESUMO

Dp71 expression is present in myoblasts but declines during myogenesis to avoid interfering with the function of dystrophin, the predominant Duchenne muscular dystrophy gene product in differentiated muscle fibers. To elucidate the transcriptional regulatory mechanisms operating on the developmentally regulated expression of Dp71, we analyzed the Dp71 expression and promoter activity during myogenesis of the C2C12 cells. We demonstrated that the cellular content of Dp71 transcript and protein decrease in myotubes as a consequence of the negative regulation that the differentiation stimulus exerts on the Dp71 promoter. Promoter deletion analysis showed that the 224-bp 5'-flanking region, which contains several Sp-binding sites (Sp-A to Sp-D), is responsible for the Dp71 promoter basal activity in myoblasts as well as for down-regulation of the promoter in differentiated cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that Sp1 and Sp3 transcription factors specifically bind to the Sp-binding sites in the minimal Dp71 promoter region. Site-directed mutagenesis assay revealed that Sp-A is the most important binding site for the proximal Dp71 promoter activity. Additionally, cotransfection of the promoter construct with Sp1- and Sp3-expressing vectors into Drosophila SL2 cells, which lack endogenous Sp family, confirmed that these proteins activate specifically the minimal Dp71 promoter. Endogenous Sp1 and Sp3 proteins were detected only in myoblasts and not in myotubes, which indicates that the lack of these factors causes down-regulation of the Dp71 promoter activity in differentiated cells. In corroboration, efficient promoter activity was restored in differentiated muscle cells by exogenous expression of Sp1 and Sp3.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Distrofina/análogos & derivados , Distrofina/genética , Desenvolvimento Muscular/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Camundongos , Dados de Sequência Molecular , Elementos de Resposta/genética , Deleção de Sequência/genética , Fator de Transcrição Sp3 , Especificidade por Substrato , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...