Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Ultrasound Med Biol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705784

RESUMO

OBJECTIVE: Although hand-held ultrasound devices (HHUSDs) are currently used for a diverse range of diagnostic and interventional applications the imaging performance of such scanners is rarely considered. The aim of this study was to assess the imaging performance of a wide-range of HHUSDs and compare their imaging performance to cart-based systems utilized for the same clinical applications. METHODS: The grayscale imaging performances of 19 HHUSDs from eight different manufacturers, manufactured between 2016 and 2021, were measured using a figure-of-merit known as the resolution integral. The imaging performance of the HHUSDs were compared to 142 cart-based ultrasound scanners. RESULTS: The HHUSD with the overall highest resolution integral (66) was a Butterfly (Burlington, MA, USA) wired phased array for small parts applications, followed by a Philips (Bothell, WA, USA) Lumify wired curvilinear transducer (57) for abdominal applications, a Butterfly wired phased array (56) for abdominal applications, a GE (Freiburg, Baden-Wurttemberg, Germany) VScan Air wireless linear array (56) for small parts applications, and a Healcerion (Seoul, Korea) Sonon 300L wireless linear array (56) for small parts applications. A GE VScan Extend wired phased array had the highest resolution integral (44) for cardiac applications. CONCLUSIONS: The Butterfly phased array had the highest resolution integral of all the 19 HHUSDs, although this value is still less than the majority of cart-based cardiac and abdominal ultrasound scanners manufactured from 2010 to 2017. Clinical users of HHUSDs should be mindful of the limitations in imaging performance of hand-held ultrasound devices.

2.
Diabet Med ; 40(12): e15192, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37531444

RESUMO

AIMS: Our aim was to determine if ultrasound-guided HPV injection in mice would provide reproducible and reliable results, as is currently obtained via open laparotomy techniques, and offer a surgical refinement to emulate islet transplantation in humans. METHODS: Fluorescent-polymer microparticles (20 µm) were injected (27G-needle) into the HPV via open laparotomy (n = 4) or under ultrasound-guidance (n = 4) using an MX550D-transducer with a Vevo3100-scanner (FUJIFILM VisualSonics, Inc.). Mice were culled 24-h post injection; organs were frozen, step sectioned (10 µm-slices) and 10 sections/mouse (50 µm-spacing) were quantified for microparticles in the liver and other organs by fluorescent microscopy. RESULTS: Murine HPV injection, via open laparotomy-route, resulted in widespread distribution of microparticles in the liver, lungs and spleen; ultrasound-guided injection resulted in reduced microparticle delivery (p < 0.0001) and microparticle clustering in distinct areas of the liver at the site of needle penetration, with very few/no microparticles being seen in lung and spleen tissues, hypothesised to be due to flow into the body cavity: liver median (interquartile range) 4.15 (0.00-4.15) versus 0.00 (0.00-0.00) particle-count mm-2 , respectively. CONCLUSIONS: Ultrasound-guided injection results in microparticle clustering in the liver, with an overall reduction in microparticle number when compared to open laparotomy HPV injection, and high variability in microparticle-counts detected between mice. Ultrasound-guided injection is not currently a technique that can replace open laparotomy HPV of islet transplantation in mice.


Assuntos
Infecções por Papillomavirus , Veia Porta , Humanos , Camundongos , Animais , Veia Porta/diagnóstico por imagem , Fígado , Ultrassonografia , Ultrassonografia de Intervenção
3.
Ultraschall Med ; 44(5): 516-519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36377189

RESUMO

The safety of ultrasound is of particular importance when examining the lungs, due to specific bioeffects occurring at the alveolar air-tissue interface. Lung is significantly more sensitive than solid tissue to mechanical stress. The causal biological effects due to the total reflection of sound waves have also not been investigated comprehensively.On the other hand, the clinical benefit of lung ultrasound is outstanding. It has gained considerable importance during the pandemic, showing comparable diagnostic value with other radiological imaging modalities.Therefore, based on currently available literature, this work aims to determine possible effects caused by ultrasound on the lung parenchyma and evaluate existing recommendations for acoustic output power limits when performing lung sonography.This work recommends a stepwise approach to obtain clinically relevant images while ensuring lung ultrasound safety. A special focus was set on the safety of new ultrasound modalities, which had not yet been introduced at the time of previous recommendations.Finally, necessary research and training steps are recommended in order to close knowledge gaps in the field of lung ultrasound safety in the future.These recommendations for practice were prepared by ECMUS, the safety committee of the EFSUMB, with participation of international experts in the field of lung sonography and ultrasound bioeffects.

4.
Mol Imaging Biol ; 25(3): 560-568, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36482032

RESUMO

PURPOSE: To support acquisition of accurate, reproducible and high-quality preclinical imaging data, various standardisation resources have been developed over the years. However, it is unclear the impact of those efforts in current preclinical imaging practices. To better understand the status quo in the field of preclinical imaging standardisation, the STANDARD group of the European Society of Molecular Imaging (ESMI) put together a community survey and a forum for discussion at the European Molecular Imaging Meeting (EMIM) 2022. This paper reports on the results from the STANDARD survey and the forum discussions that took place at EMIM2022. PROCEDURES: The survey was delivered to the community by the ESMI office and was promoted through the Society channels, email lists and webpages. The survey contained seven sections organised as generic questions and imaging modality-specific questions. The generic questions focused on issues regarding data acquisition, data processing, data storage, publishing and community awareness of international guidelines for animal research. Specific questions on practices in optical imaging, PET, CT, SPECT, MRI and ultrasound were further included. RESULTS: Data from the STANDARD survey showed that 47% of survey participants do not have or do not know if they have QC/QA guidelines at their institutes. Additionally, a large variability exists in the ways data are acquired, processed and reported regarding general aspects as well as modality-specific aspects. Moreover, there is limited awareness of the existence of international guidelines on preclinical (imaging) research practices. CONCLUSIONS: Standardisation of preclinical imaging techniques remains a challenge and hinders the transformative potential of preclinical imaging to augment biomedical research pipelines by serving as an easy vehicle for translation of research findings to the clinic. Data collected in this project show that there is a need to promote and disseminate already available tools to standardise preclinical imaging practices.


Assuntos
Pesquisa Biomédica , Animais , Inquéritos e Questionários , Padrões de Referência , Imageamento por Ressonância Magnética , Ultrassonografia
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 194-197, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086230

RESUMO

Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance- Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties.


Assuntos
Linfonodos , Microbolhas , Animais , Meios de Contraste/química , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Ultrassonografia/métodos
7.
Tomography ; 8(5): 2285-2297, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136887

RESUMO

Ultrasonic contrast agents are used routinely to aid clinical diagnosis. All premium- and mid-range scanners utilise contrast-specific imaging techniques to preferentially isolate and display the nonlinear signals generated from the microbubbles when insonated with a series of ultrasound pulses. In this manuscript the abilities of four premium ultrasound scanners to detect and display the ultrasound signal from two commercially available contrast agents-SonoVue and DEFINITY®-are compared. A flow phantom was built using tubes with internal diameters of 1.6 mm and 3.2 mm, suspended at depths of 1, 5 and 8 cm and embedded in tissue-mimicking material. Dilute solutions of SonoVue and DEFINITY® were pumped through the phantom at 0.25 mL/s and 1.5 mL/s. Four transducers were used to scan the tubes-a GE Logiq E9 (C2-9) curvilinear probe, a Philips iU22 L9-3 linear array probe, an Esaote MyLab Twice linear array LA523 (4-13 MHz) and a Fujifilm VisualSonics Vevo3100 MX250 (15-30 MHz) linear array probe. We defined a new parameter to compare the ability of the ultrasound scanners to display the contrast enhancement. This was defined as the ratio of grey-scale intensity ratio in contrast-specific imaging mode relative to the B-mode intensity from the same region-of-interest within the corresponding B-mode image. The study demonstrated that the flow rates used in this study had no effect on the contrast-specific imaging mode to B-mode (CSIM-BM) ratio for the three clinical scanners studied, with SonoVue demonstrating broadly similar CSIM-BM ratios across all 3 clinical scanners. DEFINITY® also displayed similar results to SonoVue except when insonated with the Esaote MyLab Twice LA523 transducer, where it demonstrated significantly higher CSIM-BM ratios at superficial depths.


Assuntos
Meios de Contraste , Hexafluoreto de Enxofre , Fluorocarbonos , Fosfolipídeos , Ultrassonografia/métodos
8.
Br J Radiol ; 95(1135): 20211128, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522781

RESUMO

OBJECTIVES: Despite advances in MRI the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neoadjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterisation of cancer tissues. We report proof of concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced deformations. METHODS: The feasibility of the proposed application was explored using a combination of experimental animal and phantom ultrasound imaging, along with finite element analysis. First, contrast-enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, tissue phantoms were imaged using MMUS to illustrate the force- and elasticity dependence of the magnetomotion. Third, the magnetomechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. RESULTS: Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. The magnetic microbubble gave rise to displacements depending on force, elasticity, and bubble radius, indicating an inverse relation between displacement and the latter two. CONCLUSION: Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. ADVANCES IN KNOWLEDGE: (a) Lymphatic drainage of magnetic microbubbles visualised using contrast-enhanced ultrasound imaging and (b) magnetomechanical interactions between such bubbles and surrounding tissue could both contribute to (c) robust detection and characterisation of lymph nodes.


Assuntos
Meios de Contraste , Microbolhas , Animais , Meios de Contraste/química , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Camundongos , Imagens de Fantasmas , Ultrassonografia/métodos
9.
Ultrasound Med Biol ; 48(6): 1019-1032, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307235

RESUMO

Ultrasound has previously been demonstrated to non-invasively cause tissue disruption. Small animal studies have demonstrated that this effect can be enhanced by contrast microbubbles and has the potential to be clinically beneficial in techniques such as targeted drug delivery or enhancing liquid biopsies when a physical biopsy may be inappropriate. Cavitating microbubbles in close proximity to cells increases membrane permeability, allowing small intracellular molecules to leak into the extracellular space. This study sought to establish whether cavitating microbubbles could liberate cell-specific miRNAs, augmenting biomarker detection for non-invasive liquid biopsies. Insonating human polarized renal proximal tubular epithelial cells (RPTECs), in the presence of SonoVue microbubbles, revealed that cellular health could be maintained while achieving the release of miRNAs, miR-21, miR-30e, miR-192 and miR-194 (respectively, 10.9-fold, 7.17-fold, 5.95-fold and 5.36-fold). To examine the mechanism of release, RPTECs expressing enhanced green fluorescent protein were generated and the protein successfully liberated. Cell polarization, cellular phenotype and cell viability after sonoporation were measured by a number of techniques. Ultrastructural studies using electron microscopy showed gap-junction disruption and pore formation on cellular surfaces. These studies revealed that cell-specific miRNAs can be non-specifically liberated from RPTECs by sonoporation without a significant decrease in cell viability.


Assuntos
MicroRNAs , Animais , Biomarcadores , Permeabilidade da Membrana Celular , Células Epiteliais , Humanos , Microbolhas
10.
Cancers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35158829

RESUMO

Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.

11.
Ultraschall Med ; 43(4): 393-402, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32590848

RESUMO

The grayscale imaging performance of a total of 368 different scanner/transducer combinations from 39 scanner manufacturers measured over a period of 15 years is presented. Performance was measured using the resolution integral, a single figure-of-merit to quantify ultrasound imaging performance. The resolution integral was measured using the Edinburgh Pipe Phantom. Transducers included single element, linear, phased, curvilinear and multi-row arrays. Our results demonstrate that the resolution integral clearly differentiates between transducers with varying levels of performance. Two further parameters were also derived from the resolution integral: characteristic resolution and depth of field. We demonstrate that these two parameters can successfully characterize individual transducer performance and differentiate between transducers designed for different clinical and preclinical applications. In conclusion, the resolution integral is an effective metric to quantify and monitor grayscale imaging performance in clinical practice.


Assuntos
Transdutores , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Ultrassonografia
12.
Ultraschall Med ; 42(6): 580-598, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34352910

RESUMO

Ultrasound safety is of particular importance in fetal and neonatal scanning. Fetal tissues are vulnerable and often still developing, the scanning depth may be low, and potential biological effects have been insufficiently investigated. On the other hand, the clinical benefit may be considerable. The perinatal period is probably less vulnerable than the first and second trimesters of pregnancy, and ultrasound is often a safer alternative to other diagnostic imaging modalities. Here we present step-by-step procedures for obtaining clinically relevant images while maintaining ultrasound safety. We briefly discuss the current status of the field of ultrasound safety, with special attention to the safety of novel modalities, safety considerations when ultrasound is employed for research and education, and ultrasound of particularly vulnerable tissues, such as the neonatal lung. This CME is prepared by ECMUS, the safety committee of EFSUMB, with contributions from OB/GYN clinicians with a special interest in ultrasound safety.


Assuntos
Ultrassonografia Pré-Natal , Feminino , Humanos , Recém-Nascido , Gravidez , Segundo Trimestre da Gravidez , Ultrassonografia
13.
Ultrasound Med Biol ; 47(9): 2749-2758, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144833

RESUMO

The aims of this study were firstly to manufacture and evaluate a novel elastography test phantom and secondly to assess the performance of an elastography system using this phantom. A novel Leicester-St. Thomas' Elastography Pipe (L-STEP) test phantom consisting of five soft polyvinyl acrylic-cryogel pipes of varying diameters (2-12 mm), embedded at 45° within an agar-based tissue-mimicking material was developed. A shear-wave elastography (SWE) scanner was used by two blinded operators to image and assess longitudinal sections of the pipes. Young's modulus estimates were dependent on the diameter of pipes and at superficial depths were greater than deeper depths (mean 98 kPa vs. 59 kPa) and had lower coefficients of variation (mean 21% vs. 53%). The penetration depth (maximum depth at which a SWE signal was obtained) increased with increasing pipe diameter. Penetration depth measurements had excellent inter- and intra-operator reproducibility (intra-class correlation coefficients >0.8) and coefficient of variation range of 2%-12%. A new metric, called the summative performance index, was defined as the sum of the ratios of the penetration depth/pipe diameter. The L-STEP phantom is suitable for assessing key aspects of elastography imaging performance: resolution, accuracy, reproducibility, depth dependence, sensitivity and our novel summative performance index.


Assuntos
Técnicas de Imagem por Elasticidade , Módulo de Elasticidade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Ultrassonografia
14.
Nanomedicine (Lond) ; 15(25): 2433-2445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914695

RESUMO

Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.


Assuntos
Ouro , Nanopartículas de Magnetita , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Ultrassonografia de Intervenção
15.
Hypertension ; 75(5): 1213-1222, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200679

RESUMO

GPR81 (G-protein-coupled receptor 81) is highly expressed in adipocytes, and activation by the endogenous ligand lactate inhibits lipolysis. GPR81 is also expressed in the heart, liver, and kidney, but roles in nonadipose tissues are poorly defined. GPR81 agonists, developed to improve blood lipid profile, might also provide insights into GPR81 physiology. Here, we assessed the blood pressure and renal hemodynamic responses to the GPR81 agonist, AZ'5538. In male wild-type mice, intravenous AZ'5538 infusion caused a rapid and sustained increase in systolic and diastolic blood pressure. Renal artery blood flow, intrarenal tissue perfusion, and glomerular filtration rate were all significantly reduced. AZ'5538 had no effect on blood pressure or renal hemodynamics in Gpr81-/- mice. Gpr81 mRNA was expressed in renal artery vascular smooth muscle, in the afferent arteriole, in glomerular and medullary perivascular cells, and in pericyte-like cells isolated from kidney. Intravenous AZ'5538 increased plasma ET-1 (endothelin 1), and pretreatment with BQ123 (endothelin-A receptor antagonist) prevented the pressor effects of GPR81 activation, whereas BQ788 (endothelin-B receptor antagonist) did not. Renal ischemia-reperfusion injury, which increases renal extracellular lactate, increased the renal expression of genes encoding ET-1, KIM-1 (Kidney Injury Molecule 1), collagen type 1-α1, TNF-α (tumor necrosis factor-α), and F4/80 in wild-type mice but not in Gpr81-/- mice. In summary, activation of GPR81 in vascular smooth muscle and perivascular cells regulates renal hemodynamics, mediated by release of the potent vasoconstrictor ET-1. This suggests that lactate may be a paracrine regulator of renal blood flow, particularly relevant when extracellular lactate is high as occurs during ischemic renal disease.


Assuntos
Endotelina-1/fisiologia , Hemodinâmica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bosentana/farmacologia , Endotelina-1/sangue , Taxa de Filtração Glomerular/efeitos dos fármacos , Coração/efeitos dos fármacos , Hemodinâmica/fisiologia , Infusões Intravenosas , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Lactatos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oligopeptídeos/farmacologia , Comunicação Parácrina , Peptídeos Cíclicos/farmacologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Piperidinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia
16.
Ultraschall Med ; 41(4): 387-389, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31594007

RESUMO

This document is the updated 2019 revision of the EFSUMB Clinically Safety Statement. A Safety Statement has been published by EFSUMB annually since 1994 by the Safety Committee (ECMUS) of the federation. The text is deliberately brief and gives a concise overview of safety in the use of diagnostic ultrasound.


Assuntos
Ultrassonografia , Humanos , Segurança do Paciente , Ultrassonografia/efeitos adversos , Ultrassonografia/métodos
17.
Ultrasound Med Biol ; 46(1): 167-179, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699549

RESUMO

The small size and high heart rate of the neonatal mouse heart makes structural and functional characterisation particularly challenging. Here, we describe application of electrocardiogram-gated kilohertz visualisation (EKV) ultrasound imaging with high spatio-temporal resolution to non-invasively characterise the post-natal mouse heart during normal growth and regeneration after injury. The 2-D images of the left ventricle (LV) acquired across the cardiac cycle from post-natal day 1 (P1) to P42 revealed significant changes in LV mass from P8 that coincided with a switch from hyperplastic to hypertrophic growth and correlated with ex vivo LV weight. Remodelling of the LV was indicated between P8 and P21 when LV mass and cardiomyocyte size increased with no accompanying change in LV wall thickness. Whereas Doppler imaging showed the expected switch from LV filling driven by atrial contraction to filling by LV relaxation during post-natal week 1, systolic function was retained at the same level from P1 to P42. EKV ultrasound imaging also revealed loss of systolic function after induction of myocardial infarction at P1 and regain of function associated with regeneration of the myocardium by P21. EKV ultrasound imaging thus offers a rapid and convenient method for routine non-invasive characterisation of the neonatal mouse heart.


Assuntos
Ecocardiografia , Eletrocardiografia , Traumatismos Cardíacos/diagnóstico por imagem , Coração/diagnóstico por imagem , Coração/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Eletrocardiografia/métodos , Feminino , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração
18.
Ultrasonics ; 96: 48-54, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004864

RESUMO

OBJECTIVE: The objective of the study was to investigate whether clinically used ultrasonic contrast agents improved the accuracy of spectral Doppler ultrasound in the detection of low grade (<50%) renal artery stenosis. Low grade stenoses in the renal artery are notoriously difficult to reliably detect using Doppler ultrasound due to difficulties such as overlying fat and bowel gas. METHODS: A range of anatomically-realistic renal artery phantoms with varying low degrees of stenosis (0, 30 and 50%) were constructed and peak velocity data was measured from within the pre-stenotic and mid-stenotic regions in each phantom, for both unenhanced and contrast-enhanced spectral Doppler data acquisitions. The effect of a 20 mm overlying fat layer on the ultrasound beam distortion and phase aberration, and hence on the measured peak velocity data, was also investigated. RESULTS: The overlying fat layer produced a statistically significant underestimation (p < 0.01) in both the peak velocity and peak velocity ratio [Stenotic Region(Vmax)/Pre-stenotic Region(Vmax)] for the 0% and 30% stenosis models, but not the 50% model. A statistically significant increase (p < 0.01) in the peak velocity was found in the contrast-enhanced Doppler spectra; however, no significant difference was found between the unenhanced and contrast enhanced peak velocity ratio data, which suggests that the ratio metric has better diagnostic accuracy. The peak velocity ratios determined for each of the contrast-enhanced phantoms correctly predicted if the phantom had a stenosis and furthermore correctly classified the degree of stenosis. CONCLUSION: Contrast-enhanced Doppler ultrasound could significantly assist in the early detection of renal artery disease.


Assuntos
Meios de Contraste , Aumento da Imagem/métodos , Obstrução da Artéria Renal/diagnóstico por imagem , Ultrassonografia Doppler Dupla/instrumentação , Tecido Adiposo/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Humanos , Técnicas In Vitro , Microbolhas , Imagens de Fantasmas , Fosfolipídeos , Hexafluoreto de Enxofre
19.
Ultrasound Med Biol ; 44(12): 2802-2812, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30146091

RESUMO

Intravascular ultrasound (IVUS) catheters are a specialist imaging modality used in the assessment of cardiovascular disease. The ultrasound transducer may either be of single-element mechanical or phased-array design. Because of their design and operating frequencies (10-45 MHz), evaluation of the imaging performance is not possible with commercially available ultrasound test objects. An existing test object, the Edinburgh Pipe Phantom, was modified to allow measurement of resolution integral (R), depth of field (Lr) and characteristic resolution (Dr) of IVUS catheters. In total, seven IVUS catheters, from two manufacturers and of both single-element mechanical and phased-array design, were tested to provide a measure of performance over different frequencies and technologies. Measurements of R for the tested IVUS catheters ranged from 11.9 to 18.8. The modified Edinburgh Pipe Phantom therefore allows catheter-based ultrasound probes to be evaluated scientifically and their performance to be seen in relation to other similar ultrasound technologies such as pre-clinical ultrasound and endoscopic ultrasound.


Assuntos
Imagens de Fantasmas , Transdutores , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia de Intervenção/métodos , Desenho de Equipamento
20.
Ultrasound Med Biol ; 44(11): 2371-2378, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076033

RESUMO

Tissue-mimicking materials (TMMs) are widely used in quality assurance (QA) phantoms to assess the performance of ultrasound scanners. The International Electrotechnical Commission (IEC) defines the acoustic parameters of up to 10MHz. To manufacture a TMM that closely mimics the acoustical properties of small animal soft tissue at high frequencies, the acoustic properties of each of the individual component ingredients used in the IEC agar-TMM recipe need to be quantified. This study was aimed at evaluating whether the overall attenuation coefficient of the IEC agar-TMM is the linear sum of the attenuation coefficients of each of its ingredients. Eight batches of agar-based materials were manufactured with different combinations of ingredients from the IEC agar-TMM recipe. The percentage concentration of each ingredient used in the individual mixes was identical to that specified in the IEC recipe. The attenuation of each of these batches was measured over the ultrasound frequency range 12-50MHz, and the attenuation value of the agar component was subtracted from the attenuation values of the other batches. Batch attenuation values, representing the attenuation of individual components within the IEC agar-TMM, were then summated and yielded attenuation values that accurately reproduced the attenuation of the IEC agar-TMM. This information forms a valuable resource for the future development of TMMs with acoustic properties similar to those of soft tissue at high frequencies.


Assuntos
Ágar , Materiais Biomiméticos/química , Biomimética/métodos , Imagens de Fantasmas , Ultrassonografia , Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...